FINAL ANSWER KEY

Question Paper Code: 13/2025/OL Exam:KEAM 2025 ENGG-4 Date of Test: 27-04-2025

The relation

- **1.** $R = \{(4, 4)(4, 5), (5, 7), (4, 8), (5, 5), (7, 8), (7, 7), (7, 5), (8, 8), (8, 7), (8, 5), (9, 9)\}$ on the set $A = \{4, 5, 7, 8, 9\}$ is
 - A) transitive
 - B) symmetric
 - c) reflexive
 - D) equivalence relation
 - E) a function

Correct Answer : Option C

Let $A = \{1, 2, 3, 4\}$ and $B = \{7, 8, 3, 4\}$ Then the number of elements common to both $A \times B$ and $B \times A$ is

- **A**) 8
- **B)** 6
- **C**) 12
- **D**) 4
- **E**) 2

Correct Answer : Option D

- **3.** The range of the function $f(x) = log_e(4x^2 4x + 1)$, where $x \neq \frac{1}{2}$ is
- A) $(-\infty, 0)$
- в) [0,∞)
- **c**) (0,∞)
- D) $(-\infty,0)$
- E) $(-\infty,\infty)$

Correct Answer : Option E

4. The domain of the function $f(x) = \sqrt{x^2 + 2x - 15}$ is

- A) $(-\infty, -5) \cup (3, \infty)$
- **B**) $(-\infty, -5) \cup [3, \infty)$
- c) $(-\infty, -5] \cup (3, \infty)$
- D) $(-\infty, -5] \cup [3, \infty)$
- **E**) [−5,3]

5. All the points in
$$A = \left\{\frac{\lambda + i}{\lambda - i}; \lambda \in \mathbb{R}\right\}$$
 lie on
A) a circle with radius $\sqrt{2}$

- a circle with radius 2 B)
- a circle with radius $\frac{1}{2}$ C)
- a circle with radius 1 D)
- a straight line with slope 1 E)

Correct Answer : Option D

2025 $\sum_{n=1}^{\infty} i^n (1+i), i^2 = -1$, is equal to 6. A) i + 1**в**) *i*-1 c) -i-1D) -i+1-iE)

Correct Answer : Option B

If $x, y \in \mathbb{R}$ and $x + iy = -(6+i)^3$, $i^2 = -1$, then x - y is equal to 7. A) 93 B) -93 91 C) -91 D)

-107 E)

Correct Answer : Option D

Let z = x + iy, where $x, y \in \mathbb{R}$ and $i^2 = -1$. If |z - i| = |z - 1|, then y = |z - 1|. 8. A) -x*x* + 1 B) -x - 1C) x + 2D) E) х

Correct Answer : Option E

If *a*, *b*, *c* are real numbers such that $(a - 2)^2 + (b - 2)^2 + (c - 2)^2 = 0$ 9.

a, b, c are in G.P. and a + b + c = 6A)

- **B**) a, b, c are in G.P. and a + b + c = 4
- **c**) *a, b, c* are not in G.P.
- **D**) a, b, c are in G.P. and a + b + c = 8
- E) a, b, c are not in G.P. and a + b + c = 16

10. Let $a, \frac{3}{4}, ar^2, ar^3, \ldots$ be in G.P. where r > 0 If the product of first four terms of the G.P. is $\frac{3^6}{4^5}$ then a is equal to A) $\frac{3}{2}$ B) $\frac{2}{3}$ C) $\frac{1}{3}$ D) $\frac{1}{2}$ E) 1

Correct Answer : Option D

- **11.** Let a_1, a_2, \ldots, a_n be positive non-zero real numbers. If $a_1, a_2, \ldots, a_n = k$ then the minimum value of $a_1 + a_2 + \ldots + a_n$ is
 - A) $n(k)^{2/n}$
 - **B**) $n(k)^{1/n}$
 - c) $(k)^{1/n}$
 - D) $(k)^{2/n}$
 - E) $2n(k)^{2/n}$

Correct Answer:-Question Cancelled

- 12. Let λ be the A.M. between α and β and also G.M. between α and β . Then $\alpha^2 + \beta^2 =$
 - **A**) 3αβ
 - **B**) $\frac{1}{2}\alpha\beta$
 - **C**) αβ
 - **D**) 4αβ
 - **Ε**) 2αβ

Correct Answer : Option E

- **13.** The number of integers greater than 7000 using 2,4,6,7,8 without repetition, is
- **A**) 168
- **B**) 336

- **C**) 196
- **D**) 256
- E) 512

- **14.** The coefficient of x^9 in the expansion of $\left(4 \frac{x^2}{4}\right)^{12}$ is
- A) $-{}^{12}C_7(4)^7(3)^5$ B) ${}^{12}C_7(4)^7(3)^5$ C) ${}^{12}C_6(4)^6(3)^6$ D) ${}^{12}C_5(4)^5(3)^7$ E) 0
- ,

Correct Answer : Option E

- **15.** Five digit number is formed using the digits 0,1,2,3,4 and 5 without repetitions. Number of five digit numbers which are divisible by 10 is
- **A**) 360
- **B**) 240
- **C**) 120
- **D**) 480
- E) 520

Correct Answer : Option C

16. The constant term in the expansion of $\left(2x^2 - \frac{1}{x^2}\right)^6$ is

- **A**) -160
- **B**) 160
- **C**) -180
- **D**) 180
- **E)** 0

Correct Answer : Option A

17. If *n* is a positive integer and the coefficient of *x* in the expansion of $\left(x^2 + \frac{1}{x^3}\right)^n$ is nC_7 , then *n* is equal to

- is equal
- **A**) 18
- **B**) 16
- **C**) 17
- **D**) 21
- **E**) 19

- **18.** Let $A = (a_{ij})_{3\times 3}$, $B = (b_{ij})_{3\times 2}$ and $C = (c_{ij})_{3\times 1}$. Which one of the following products, is not defined ?
- A) $C^T A B$
- **B**) $A^T A B$
- c) $(AB)^T C$
- **D**) (*AB*)*C*
- E) $B^T C$

Correct Answer : Option D

- **19.** Let A be a square matrix of order 3 and |A| = 9 Then |adj(adjA)| =
 - **A**) 6561
 - **B**) 6564
 - **C**) 6569
 - **D**) 8187
 - **E**) 8164

Correct Answer : Option A

20. If $\begin{vmatrix} 1 & 0 & 0 \\ x & x+2 & 0 \\ x^2 & x & x+3 \end{vmatrix} = 0$, then value of x are **A**) 2,3 **B**) -2,3 **C**) -2,-3 **D**) 1,2,3

E) -1,2,-3

Correct Answer : Option C

21. Let $A = \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If $(I + A) \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 8 & -5 \\ 22 & x \end{pmatrix}$, then the value of x is equal to **A**) 14 **B**) -14 **C**) 12 **D**) -12 **E**) 15

Correct Answer : Option B

22. The solution set for -12x > 38, where *x* is a natural number, is

- **A**) {1,2,3}
- в) {1,2}
- **C**) {1}
- D) empty set
- E) {-1,-2,-3}

Correct Answer : Option D

- **23.** Let x be a real number such that $x + \frac{x}{4} + \frac{x}{3} < 13$. Then the solution set is
- A) $\left(-\infty, \frac{156}{19}\right)$ B) $\left(\frac{156}{19}, \infty\right)$ C) $\left(\frac{154}{19}, \infty\right)$
- (19) $\left(-\infty, \frac{154}{17}\right)$
- **E**) $\left(\frac{-156}{19}, \frac{156}{19}\right)$

Correct Answer : Option A

24. $cos75^{\circ}cos45^{\circ}cos15^{\circ}=$ A) $\frac{1}{3\sqrt{2}}$ B) $\frac{1}{\sqrt{2}}$ C) $\frac{1}{4\sqrt{2}}$ D) $\frac{1}{2\sqrt{3}}$ E) $\frac{2}{\sqrt{3}}$

Correct Answer : Option C

25. If $\alpha + \beta + \nu = 2\pi$, then $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\nu}{2} =$

- **A**) $\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\nu}{2}$
- **B**) $-\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\nu}{2}$
- **c**) $2 \tan \frac{\alpha}{2} tan \frac{\beta}{2} tan \frac{\nu}{2}$
- **D**) $3 \tan \frac{\alpha}{2} tan \frac{\beta}{2} tan \frac{\nu}{2}$

E) 4 $\tan \frac{\alpha}{2} tan \frac{\beta}{2} tan \frac{\nu}{2}$

Correct Answer : Option A

26.
$$\tan (315^{\circ}) \cot (-405^{\circ}) =$$

A) -1
B) 1
C) $\frac{1}{\sqrt{2}}$
D) $\frac{\sqrt{3}}{2}$
E) $\frac{1}{2}$

Correct Answer : Option B

27.
$$\frac{\sin\frac{\pi}{7} + \sin\frac{2\pi}{7}}{1 + \cos\frac{\pi}{7} + \cos\frac{2\pi}{7}} =$$
A)
$$\cot\frac{\pi}{7}$$
B)
$$\cos\frac{\pi}{14}$$
c)
$$1 + \sin\frac{\pi}{14}$$
D)
$$1 + \cos\frac{\pi}{14}$$
E)
$$\tan\frac{\pi}{7}$$

Correct Answer : Option E

Correct Answer : Option B

31. Let $a \neq 1$ be non-zero real number. If the lines 2x + ay = 1 and x + 2y = 1 are perpendicular, then the value of a is equal to

- **A**) 1
- **B**) -2
- **c**) 2
- **D**) -1
- **E**) $-\frac{1}{2}$

Correct Answer : Option D

32. Let P(1,2), Q(a,b), R(5,7) and S(2,3)

-) be the vertices of a parallelogram PQRS . Then
- A) a = 4, b = 2
- в) *a* = 6, *b* = 2
- c) a = 6, b = 4
- **D**) a = 3, b = 2
- **E**) a = 4, b = 6

Correct Answer : Option E

33. Which one of the following lines, passes through the point of intersection of x + y = 5 and 2x + y = 7?

A)
$$4x + 3y = -1$$

B) 3x + 2y = 7

- c) 4x 3y = -1
- 4x + 3y 2 = 0D)
- 4x + 3y + 3 = 0E)

The axis of a parabola is x = 0. If the vertex is at a distance 3 from the origin above the 34. x -axis. The vertex of the parabola is at

- (3,0) A)
- (-3,0)B)
- (3, -3)C)
- (3,3)D)
- (0,3)E)

Correct Answer : Option E

- **35.** Length of the Latus rectum of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ is
 - 3 2 A)
 - 8 B)
 - 9 2 C)

 - 2 D)
 - 25 2 E)

Correct Answer : Option C

36. The centre of the ellipse $4x^2 + 24x + 9y^2 - 18y + 9 = 0$ is

- (1,3)A)
- в) (1, -3)
- c) (3, -1)
- D) (-3,1)
- (3, -3)E)

Correct Answer : Option D

The line x - y + 4 = 0 touches the ellipse $x^2 + 3y^2 = 12$ at 37.

- (1,3)**A**)
- (3,1)B)
- (0,2)C)
- (0, -2)D)
- (-3,1)E)

Correct Answer : Option E

- **38.** Let $\overrightarrow{OA} = 2\hat{\imath} + 3\hat{\jmath} 5\hat{k}$, $\overrightarrow{OB} = 3\hat{\imath} + \hat{\jmath} 2\hat{k}$; $\overrightarrow{OC} = 6\hat{\imath} 5\hat{\jmath} + 7\hat{k}$ be the position vectors of the points ,*A B* and *C*. Then
 - A) $\overrightarrow{AC} = 3\overrightarrow{AB}$
 - **B**) $\overrightarrow{AB} = 3\overrightarrow{BC}$
 - c) $\overrightarrow{AC} = 2\overrightarrow{AB}$
 - **D**) $\overrightarrow{AB} = 3\overrightarrow{BC}$
 - E) $\overrightarrow{AC} = 4\overrightarrow{AB}$

39. Let $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AC} = -\hat{i} + 2\hat{j} + 2\hat{k}$. If θ is the angle between \overrightarrow{AB} and \overrightarrow{AC} then $\sin\theta =$ **A**) $\frac{\sqrt{13}}{9}$ **B**) $\frac{\sqrt{15}}{9}$ **c**) $\frac{\sqrt{14}}{9}$ **b**) $\frac{\sqrt{17}}{9}$ **c**) $\frac{\sqrt{17}}{9}$

Correct Answer : Option D

40. Let $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$. If $|\vec{a} + \vec{b}| = \sqrt{29}$, then $\vec{a} + \vec{b}$ = A) $(2\hat{i} + 3\hat{j} - 4\hat{k})$ B) $-(2\hat{i} + 3\hat{j} - 4\hat{k})$ c) $\pm (2\hat{i} + 3\hat{j} + 4\hat{k})$ D) $\pm (2\hat{i} - 3\hat{j} + 4\hat{k})$ E) $\pm \sqrt{29}(2\hat{i} + 3\hat{j} + 4\hat{k})$

Correct Answer : Option C

41. Let $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 4\hat{k}$, $\vec{b} = 2\hat{\imath} + 4\hat{\jmath} + 8\hat{k}$ and $\vec{c} = 2\hat{\imath} + 4\hat{\jmath} + 3\hat{k}$. Then $(\vec{a} \times \vec{b})$. $\vec{c} =$ **A**) 4 **B**) 6 **C**) 8 **D**) 2 **E**) 0

Correct Answer : Option E

- **42.** The point of intersection of the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-11}{4}$ and $\frac{x-3}{1} = \frac{y-\frac{9}{2}}{2} = \frac{z}{1}$ is
 - **A**) $\left(-2,\frac{11}{2},5\right)$
 - **B**) $\left(-2,\frac{11}{2},-5\right)$
 - **c**) $\left(-2, \frac{-11}{2}, -5\right)$ **D**) $\left(-2, \frac{11}{4}, -5\right)$
 - **E**) $\left(-2, \frac{-11}{5}, \frac{-5}{2}\right)$

Correct Answer:-Question Cancelled

- **43.** The equation of the line passing through (0, 0, 1) and (1,1,0) is
- A) $\overrightarrow{r} = \widehat{k} + \lambda (\widehat{i} + \widehat{j} \widehat{k}), \lambda \in \mathbb{R}$ B) $\overrightarrow{r} = \widehat{j} + \lambda (\widehat{i} - \widehat{j} + \widehat{k}), \lambda \in \mathbb{R}$ c) $\overrightarrow{r} = \widehat{i} + \lambda (\widehat{i} + \widehat{j} + \widehat{k}), \lambda \in \mathbb{R}$ D) $\overrightarrow{r} = \widehat{i} + \widehat{j} + \lambda (\widehat{i} - \widehat{j} - \widehat{k}), \lambda \in \mathbb{R}$ E) $\overrightarrow{r} = \widehat{i} + \widehat{j} + \widehat{k} + \lambda (\widehat{i} + \widehat{j} - \widehat{k}), \lambda \in \mathbb{R}$

Correct Answer : Option A

44. Which one of the following is a vector parallel to the straight line $\vec{r} = (\hat{\iota} - 11\hat{j} + 101\hat{k}) + \lambda (3\hat{\iota} - 5\hat{j} + 2\hat{k}), \lambda \in \mathbb{R}$ A) $-3\hat{\iota} + 5\hat{j} - 2\hat{k}$ B) $3\hat{\iota} + 5\hat{j} + 2\hat{k}$ c) $\hat{\iota} - 11\hat{j} + 101\hat{k}$ D) $-\hat{\iota} + 11\hat{\imath} + 101\hat{k}$

E) $-4\hat{\iota} - 16\hat{j} + 103\hat{k}$

Correct Answer : Option A

45. A straight line through the point (1,-1,0) meets the line $\frac{x-1}{1} = \frac{y+1}{1} = \frac{z-1}{-1}$ at right angle . It's equation is

The mean deviation about the mean for the following data

46.	x	:	2	4	6	10
	f	:	7	4	5	4
A)	2					
B)	2.5					
C)	4					
D)	6					
E)	5					

Correct Answer : Option B

47. If P(A) = 0.7, P(B) = 0.5 and $P(A \cup B) = 0.9$. Then P(A / B) is

- A) 0.3
- **B**) 0.4
- **C**) 0.5
- **D**) 0.6
- **E)** 0.7

Correct Answer : Option D

48. The variance of 240, 260, 270, 280 is

- **A**) $\frac{475}{4}$ **B**) $\frac{475}{2}$ **C**) $\frac{475}{8}$ **D**) $\frac{475}{16}$
- **E**) $\frac{875}{4}$

Correct Answer : Option E

49.	Four unbiased coins are tossed simultaneously. Probability of getting atmost two heads, is
A)	<u>5</u> 8
B)	<u>9</u> 16
C)	$\frac{11}{16}$
D)	$\frac{13}{16}$
E)	<u>15</u> 16

50. $\lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{x^2} =$ **A**) $\frac{\pi}{2}$ **B**) π **c**) 2π **D**) π^2 **E**) $\frac{\pi^2}{2}$

Correct Answer : Option B

51. If [x] is the greatest integer less than or equal to x, then $\lim_{x \to 0^-} \frac{\sin[x]}{[x]}$ is equal to

- **A**) 1
- **B**) sin 1
- **C**) -1
- **D**) 0
- E) -sin 1

Correct Answer : Option B

52.	$\lim_{x \to 2} \frac{(x^3 - 8)\sin(x - 2)}{x^2 - 4x + 4}$ is equal to
A)	4
B)	8
C)	12
D)	-8
E)	-12
,	

Correct Answer : Option C

- **53.** $\lim_{x \to 0} \frac{x \cos^2 x}{\sin x}$ is equal to
- **A**) 4
- **B**) 2
- **C**) -2
- **D**) 0
- E) 1

54. Let [a] be the greatest integer less than or equal to a, then $\lim_{x \to 0^+} x \left\{ \begin{bmatrix} 1 \\ x \end{bmatrix} + \begin{bmatrix} 2 \\ x \end{bmatrix} \right\}$ is equal to

- **A**) 2
- **B)** 1
- **c**) 3
- **D**) 0
- E) 4

Correct Answer : Option C

55. If f(x) = sin(|x|) - |x|, $x \in \mathbb{R}$, then f is

- A) not differentiable at $x = \frac{\pi}{6}$
- **B**) not differentiable at $x = \frac{\pi}{2}$
- **c**) not differentiable at $x = \frac{\pi}{4}$
- **D**) not differentiable at $x = \pi$
- E) not differentiable at x = 0

Correct Answer:-Question Cancelled

- **56.** The function $f(x) = |x^2 3x + 2|$, $x \in \mathbb{R}$ is not differentiable at
- A) x = 1 and x = 3
- **B**) x = 1 and x = 2
- c) x = 2 and x = 4
- **D**) x = 4 and x = 5
- **E**) x = -1 and x = -2

Correct Answer : Option B

57. If $e^{y} + x^{2}y + xy^{2} = e^{2}$, then $\frac{dy}{dx}$ at (0,1) is equal to A) $\frac{1}{e}$ B) eC) -eD) $\frac{2}{e}$

E)
$$\frac{-1}{e}$$

58.	If $f(x) = x x $, then $f'(-10)=$
A)	-20
B)	-10
C)	-40
D)	20
E)	40

Correct Answer : Option D

59. If $y = (\tan x)^x$, then $\frac{1}{y} \frac{dy}{dx} =$ A) $log(\tan x) + 2x cosec(2x)$ B) log(tanx) + x cosec(2x)c) $x log(\tan x) + 2xcosec(2x)$ D) $xlog(\tan x) + x^2cosec(2x)$

E)
$$log(tanx) + \frac{x}{2}cosec(2x)$$

Correct Answer : Option A

60. The minimum of f(x) = |x + 2|, $x \in \mathbb{R}$ occurs at

- A) x = 0
- **в**) x = 2
- **c**) x = 1
- D) x = -2
- E) x = -1

Correct Answer : Option D

61. If
$$g(x) = x^2 - x, x \in \mathbb{R}$$
, then $g(x)$ is increasing in
A) $(-\infty, \infty)$
B) $(-\infty, 0)$
C) $(0, -\infty)$
D) $(-5,5)$
E) $\left[\frac{1}{2}, \infty\right]$

Correct Answer : Option E

62. The distance travelled by a moving particle is given by $s = t^2 - 6t + 10$, where *t* is the time in seconds. The particle is at rest when *t* =

- **A**) 1
- **B**) 4
- **C**) 6
- **D**) 3
- E) 8

Correct Answer : Option D

63. The maximum value of the function $f(x) = x\sqrt{4x - x^2}$ is

- A) $\sqrt{3}$
- **B**) 4√3
- c) $5\sqrt{3}$
- D) $3\sqrt{3}$
- E) $6\sqrt{3}$

Correct Answer : Option D

$$64. \quad \int \frac{\sin 2x}{\sin x} \, dx =$$

- A) sinx + C
- **в**) 2*cosx* + *C*
- c) -cosx + C
- **D**) -sinx + C
- E) 2sinx + C

Correct Answer : Option E

65.
$$\int \frac{\log(1+x)}{(1+x)} dx =$$

A) $\frac{1}{2} \log(1+x) + C$
B) $\frac{1}{2} [\log(1+x)]^2 + C$
C) $[\log(1+x)]^2 + C$
D) $\log(1+x) + C$

E) x log(1 + x) + C

Correct Answer : Option B

66.
$$\int \frac{\cos \theta}{2 - \sin^2 \theta} d\theta =$$

A)
$$\frac{1}{2} \log \left| \frac{\sqrt{2} - \sin \theta}{\sqrt{2} + \sin \theta} \right| + C$$

B)
$$\frac{1}{2}\log\left|\frac{\sqrt{2}+\sin\theta}{\sqrt{2}-\sin\theta}\right|+C$$

C)
$$\log \left| \frac{\sqrt{2} + \sin \theta}{\sqrt{2} - \sin \theta} \right| + C$$

D)
$$\frac{1}{\sqrt{2}} \log \left| \frac{\sqrt{2} + \sin \theta}{\sqrt{2} - \sin \theta} \right| + C$$

E)
$$\frac{1}{2\sqrt{2}}\log\left|\frac{\sqrt{2}+\sin\theta}{\sqrt{2}-\sin\theta}\right|+C$$

67.
$$\int (\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x}) dx =$$

A) $\frac{\pi}{2} + C$
B) $\frac{\pi x}{4} + C$
c) $\frac{\pi x}{3} + C$
D) $\frac{\pi x}{2} + C$
E) $\frac{-\pi x}{2} + C$

Correct Answer : Option D

68.
$$\int e^{x} \left[\frac{1}{1+x} - \frac{1}{(1+x)^{2}} \right] dx =$$
A)
$$\frac{e^{x}}{1+x} + C$$
B)
$$\frac{xe^{x}}{1+x} + C$$
C)
$$e^{x} (1+x)^{2} + C$$
D)
$$\frac{e^{x}}{(1+x)^{2}} + C$$
E)
$$\frac{e^{x}}{1+x^{2}} + C$$

Correct Answer : Option A

69.
$$\int_{3}^{5} \frac{1}{x(1+x)} dx =$$

A) $\log(\frac{10}{9})$
B) $\log(5)$
c) $\log(2)$

D)
$$\log\left(\frac{11}{9}\right)$$

E) $\log\left(\frac{13}{9}\right)$

- **70.** If [x] is the greatest integer less than or equal to x, then $\int_{-3}^{3} [x] dx =$
 - **A**) -3
 - в) -6
 - **c**) -4
 - **D**) -2
 - **E**) 0

Correct Answer : Option A

Correct Answer : Option E

Correct Answer : Option C

- **73.** The integrating factor of the differential equation $\frac{dy}{dx} 2y = 2x 3$ is
- A) e^{2x}

B)
$$\frac{-1}{2}e^{-2x}$$

c) $\frac{1}{2}e^{-2x}$ D) $\frac{1}{2}e^{-2x}$ E) e^{-2x}

Correct Answer : Option E

74. The elimination of arbitrary constants c_1, c_2, c_3, c_4 from $y = (c_1 + c_2)sin(2x + c_3) + c_4e^{5x}$ gives a differential equation of order

- **A**) 2
- **B**) 4
- **c**) 3
- **D**) 1
- **E)** 5

Correct Answer : Option C

Consider the linear programming problem.

- Minimize z = x + y
- **75.** Subject to the constraint $2x + 3y \ge 6, x \ge 0, y \ge 0$ Then the solution of L.P.P. is
 - **A**) 0
 - в) 2
 - **c**) 3
 - **D**) 5
 - **E**) 6

Correct Answer : Option B

- **76.** The dimensions of $\frac{mB}{kT}$ where m is the magnetic moment, B, the magnetic flux density, k, Boltzmann constant and T, the absolute temperature are:
 - **A**) $ML^{-1}T^{-1}$
 - **B**) ML^2T^{-1}
 - c) MLT^{-1}
 - D) $ML^{-2}T$
 - E) $M^{0}L^{0}T^{0}$

Correct Answer : Option E

- 77. The SI unit of surface tension is
- A) Nm^{-1}
- B) Nm^{-2}

- c) Nm^2
- **D**) Nm
- E) N

78. A car starting from rest moves such that its acceleration varies with time as $a = 6t (ms^{-2})$. Its velocity (in ms⁻¹) and displacement (in m) after 4 seconds, respectively, are

- **A)** 48, 64
- **B**) 16, 24
- **c)** 16, 38
- **D)** 24, 32
- **E)** 32, 24

Correct Answer : Option A

For the graph shown below between time t and velocity v of the motion of a body, the correct statement is:

- A) The body comes to rest at infinite time
- **B**) At t = 0, acceleration is positive
- c) At t = 0, acceleration is negative
- **D**) At t = 0, the body has maximum velocity
- E) The displacement of the particle is zero.

Correct Answer : Option D

- 80. The coefficient of friction is defined as the ratio of
 - A) frictional force to applied force
 - B) frictional force to normal force
 - c) normal force to frictional force
 - D) weight of the object to frictional force
 - E) applied force to frictional force

Correct Answer : Option B

A tennis ball of mass 150 g is moving at 20 ms $^{-1}$. A racket strikes it, reversing its

81. direction with a final speed of 30 ms⁻¹. If the contact time is 0.02 s, then the magnitude of the force (in N) exerted by the racket is

- **A**) 1.5 N
- **B)** 3.75 N
- **c**) 15 N
- **D**) 150 N
- E) 375 N

- 82. A traffic light of mass $10\sqrt{3}$ kg is suspended by two cables making 30° with the vertical. The tension in each cable is:
 - **A**) 10 N
 - **B**) 9.8 N
 - **C**) 98 N
 - D) 19.6 N
 - E) 20 N

Correct Answer : Option C

83. A car moves at a speed of 20 ms⁻¹ under a force of 500 N. The power output of the car is

- **A**) 9.8 kW
- **B**) 980 kW
- **c**) 98 kW
- **D**) 10 kW
- E) 100 kW

Correct Answer : Option D

- **84.** A spring is stretched twice its initial extension. Compared to its initial value, the potential energy
- A) becomes four times
- B) is doubled
- **c**) is halved
- D) remains the same
- E) becomes zero

Correct Answer : Option A

- **85.** If a spinning object contracts, its angular velocity
 - A) remains the same
 - B) becomes zero
 - c) becomes negative
 - D) increases
 - E) decreases

Correct Answer : Option D

A boy whirls a ball on a string along a horizontal circle of radius 98 cm. The angular

- velocity (in rad s⁻¹) with which the ball has to be whirled so that its acceleration towards 86. the centre of the circle has the same magnitude as acceleration due to gravity is
 - $\sqrt{10}$ A)
 - B)
 - $\frac{1}{\sqrt{10}}$
 - 10 C)
 - 0.1 D)
 - 100 E)

Correct Answer : Option A

87. The centre of mass of a thin uniform rod of length L lies at a distance (from one end)

A)	$\frac{2L}{3}$
B)	$\frac{3L}{4}$
C)	$\frac{L}{2}$
D)	$\frac{L}{3}$
E)	$\frac{L}{4}$

Correct Answer : Option C

88. The ratio of the escape velocity to the orbital velocity of the earth is

- 2 A)
- $\sqrt{2}$ B)
- $\frac{1}{\sqrt{2}}$ C)
- 1 2 D)
- $\sqrt{3}$ E)

Correct Answer : Option B

- The gravitational potential energy of a body of mass m on the surface of earth of mass M 89. and radius R is (G - Gravitational constant)
- -GMm**A**) R GMm
- B) R
- mgR C)
- -mgR D)
- Zero E)

Correct Answer:-Question Cancelled

90. In a liquid medium, if the depth increases, the pressure at that place

- A) decreases
- B) increases
- c) remains constant
- D) depends on the shape of the container
- E) is zero

- **91.** The angle of contact is the angle between
 - A) the normals to the liquid surface and the container wall
 - B) the liquid surface and the container wall
 - c) the tangent to the liquid surface and solid surface within the liquid at the point of contact
 - D) the liquid surface and solid surface outside the liquid
 - E) the line joining the centres of curvature of the liquid meniscus

Correct Answer : Option C

Water flows at 3 ms⁻¹ in a horizontal pipe under a pressure of 2 × 10 5 Nm⁻² The pipe

- **92.** narrows to half its original diameter at one end. The speed of water (in ms $^{-1}$) in this narrow section is
 - **A**) 3
 - в) 4
 - **C**) 6
 - **D**) 12
 - **E**) 24

Correct Answer : Option D

A Carnot engine is working between 127 °C and 27 °C. Keeping the sink temperature**93.** unaltered, the temperature at which the source has to be kept so as to double its efficiency is

- **A**) 400°C
- в) 273 °С
- **c**) 327°C
- **D**) 525 °C
- **E**) 600°C

Correct Answer : Option C

- **94.** The ratio of specific heat capacities of a diatomic gas at constant pressure and constant volume is
 - **A**) 1.4
 - **B**) 1.6
 - **C**) 1.7
 - **D**) 1.8
 - **E)** 1.5

- **95.** The translational kinetic energy of an ideal gas containing N molecules at temperature T is (k Boltzmann constant)
- A) $\frac{5}{2}NkT$
- B) $\frac{1}{2}NkT$
- c) $\frac{3}{2}NkT$
- D) $\frac{7}{2}NkT$
- E) $\frac{9}{2}NkT$

96. For an ideal gas of molar mass *M*, the slope of the plot between the rms velocity (v_{rms} along the y-axis) and the square root of absolute temperature (\sqrt{T} along the x-axis) is

Correct Answer : Option B

- **97.** In a simple harmonic motion,
 - A) the velocity is constant
 - B) the motion is periodic
 - c) the acceleration is directly proportional to velocity
 - **D**) the acceleration is along the direction of displacement
 - E) the motion must be along a straight line

Correct Answer : Option B

- 98. The principle of superposition in wave motion states that
 - A) the net displacement is the vector sum of individual displacements
 - B) waves interfere with each other and lose energy
 - c) waves cannot occupy the same space at the same time
 - **D**) it is applicable to sound waves only

E) it is applicable to standing waves only

Correct Answer : Option A

- **99.** The number of nodes and antinodes in a guitar string vibrating in the third harmonic is:
 - A) 5 nodes, 4 antinodes
 - B) 4 nodes, 3 antinodes
 - c) 3 nodes, 2 antinodes
 - D) 2 nodes, 3 antinodes
 - E) 1 node, 2 antinodes

Correct Answer : Option B

100. The electric field inside a uniformly charged spherical shell of radius R is:

- A) directly proportional to the charge within the shell
- **B**) inversely proportional to R^2
- c) same as that outside the shell
- D) zero
- E) maximum at the centre

Correct Answer : Option D

101. The torque on an electric dipole consisting of charges q and -q of dipole moment P in a uniform electric field E is

- A) qE
- в) -qE
- **c**) Zero
- D) **P.E**
- E) P×E

Correct Answer : Option E

102. The direction of the electric field due to a positive charge is:

- A) circular around the charge
- B) radially inwards towards the charge
- c) radially outwards away from the charge
- D) along a fixed straight line away from the charge
- E) along a fixed straight line towards the charge

Correct Answer : Option C

103. A Wheatstone bridge is used to measure

- A) unknown resistances
- B) direct current
- c) alternating current
- D) electric power

voltage E)

Correct Answer : Option A

The current carrying rail of a subway track is made of steel and has a cross-sectional **104.** area of about 20 cm^2 . The resistance of 2 km of the track is (in ohm) as a multiple of the specific resistance of steel, p is:

- 10² ρ A)
- 10³ ρ B)
- 10⁴ ρ C)
- 10⁵ ρ D)
- 10⁶ ρ E)

Correct Answer : Option E

- If n identical cells each of emf E and internal resistance r are connected in parallel, the 105. total EMF and total internal resistance of the combination, respectively, are
 - nE, nr A)
 - E, nr B)
 - $E, \frac{r}{n}$ C)
 - nE, 2nr D)
 - $nE, \frac{r}{n}$ E)

Correct Answer : Option C

106. The line integral of the magnetic field around a closed loop is directly proportional to the:

- current enclosed A)
- charge enclosed B)
- C) voltage across the loop
- length of the loop D)
- electric field around the loop E)

Correct Answer : Option A

- **107.** The magnetic dipole moment of a current loop carrying current *I* and of area *A* with n turns is
 - IA A) п

 - $\frac{IA}{n^2}$ B)
 - *IA* 2
 - C)
 - nIA D)
 - IA E)

108. A galvanometer is converted into a voltmeter by connecting

- A) a high resistance in series
- B) a low resistance in series
- c) a high resistance in parallel
- **D**) a low resistance in parallel
- E) an inductance in series

Correct Answer : Option A

109. The resistance of a semiconductor

- A) increases with increase in temperature
- B) decreases with increase in temperature
- c) is independent of temperature
- D) becomes infinite at high temperature
- E) becomes zero at high temperature

Correct Answer : Option B

110. A metal rod of length 0.5 *m* moves with its length perpendicular to a uniform magnetic field of 0.2 *T* with a velocity of 3 ms^{-1} . The induced emf in the rod is

- **A)** 0.1 V
- **B**) 0.2 V
- **c**) 0.3 V
- **D**) 0.4 V
- E) 0.6 V

Correct Answer : Option C

- **111.** The speed of electromagnetic waves in a medium depends on the
 - A) intensity of the wave
 - B) initial phase of the wave
 - c) permittivity and permeability of the medium
 - D) energy it carries
 - E) reflectivity of the medium

Correct Answer : Option C

112. When a beam of white light enters into an optical prism, the most deviated colour is

- A) green
- B) violet
- c) yellow
- D) red
- E) blue

- 113. The phenomenon of diffraction is most significant when the slit width is
 - A) much larger than the wavelength
 - B) much smaller than the wavelength
 - c) comparable to the wavelength
 - D) equal to the screen distance
 - E) independent of the wavelength

Correct Answer : Option C

114. In Huygens construction, the secondary wavelets move

- A) in all directions
- B) only radially outward
- c) only radially inward
- D) only in the backward direction of the incident light
- E) in a direction perpendicular to the direction of the incident light

Correct Answer : Option A

- **115.** The plot of maximum kinetic energy of photo-electrons to the energy of the incident photon above its threshold frequency on a photo-sensitive material of work function φ is
- A) an oblique straight line with a positive slope.
- **B**) an oblique straight line with a negative slope.
- c) an oblique straight line passing through the origin.
- **D**) an exponential curve.
- E) a polynomial curve of order 2.

Correct Answer : Option A

116. The ratio of the respective de Broglie wavelengths of two particles with kinetic energy of 0.02 eV and 2 eV, respectively, is

- **A**) 1:1
- **B**) 10:1
- **c**) 1:10
- D) 1: $\sqrt{10}$
- E) $\sqrt{10}$: 1

Correct Answer : Option B

In the following nuclear reaction, Z is a/an

117.

$$^{197}_{80}X \rightarrow ^{197}_{79}Y + Z + v$$

- A) α particle
- **B**) β^+ particle

- **c**) β^- particle
- **D**) proton
- E) neutron

118. If a radioactive element disintegrates for a period of time equal to its mean life, then the fraction of the original amount remaining undisintegrated is

- A) *e*-
- в) 1-е
- **C**) $1 \frac{1}{e}$
- 1
- D) $\frac{1}{e}$
- **E**) 2*e*

Correct Answer : Option D

119. In a Germanium crystal containing N atoms, the total number of outer electrons in the crystal is

- **A**) N
- **B**) 2 N
- **c**) 3 N
- D) 6N
- E) 4 N

Correct Answer : Option E

120. The donor level in an *n*-type semiconductor lies

- A) just below the conduction band
- B) exactly at the middle of the band gap
- c) just below the valence band
- D) just above the conduction band
- E) on the valence band

Correct Answer : Option A

Ten grams of calcium carbonate which is only 90% pure is treated with excess

121. hydrochloric acid. What is the mass of *CO*₂ gas liberated? (Atomic mass: Ca=40, C=12 & O=16)

- **A**) 4.4g
- **B**) 3.96g
- **c**) 2.2g
- **D**) 0.44g
- **E)** 0.22g

122. For any sub-shell defined by l' value how many values of magnetic quantum number (*m* l) are possible?

- A) (2l)
- в) (2l-1)
- c) (2l+1)
- D) (*l*+1)
- E) (*l*-1)

Correct Answer : Option C

123. What is the total number of orbitals associated with the principal quantum number n=3?

- **A**) 3
- **B**) 6
- **C**) 9
- **D**) 10
- E) 14

Correct Answer : Option C

124. The alkali metal with the highest first enthalpy of ionization is

- A) Cs
- B) Rb
- **c**) K
- D) Na
- E) Li

Correct Answer : Option E

125. Which one of the following molecules contains two 'sigma' bonds and two 'pi' bonds?

- **A**) O₂
- в) N₂
- c) C_2H_2
- **D**) CO₂
- E) CO

Correct Answer : Option D

12g of pure graphite is burnt completely in a bomb calorimeter in excess of oxygen at 298 K at 1 atm. pressure. During combustion, the temperature rises from 298 K to 308 K. The

126. heat capacity of the bomb calorimeter is 20.7 kJ K^{-1} . What is the enthalpy change for combustion of 1 mole of graphite

(in kJ mol⁻¹) at 298 K and 1 atm. pressure? (R=8.3 JK⁻¹ mol⁻¹)

- **A**) -2070
- в) -207
- **c**) +2070
- **D**) +207
- E) +2.07

If water vapour is assumed to be a perfect gas, molar enthalpy change for vapourisation
 of 1 mol of water at 1bar and 100°C is 41kJ mol⁻¹. Calculate the internal energy change (in kJ mol⁻¹) when 1 mole of water is vaporized at 100°C at 1 bar assuming water vapour as an ideal gas. (R=8.3 JK⁻¹mol⁻¹)

- **A**) 43.1
- **B**) 37.9
- **c**) -43.1
- **D**) -37.9
- **E**) 41.0

Correct Answer : Option B

128. If "S" is the solubility of X_3Y_2 in pure water, assuming that neither kind of ion reacts with water, then, the solubility product, K_{sp} is

- **A)** 27 S⁴
- **B**) 108 S⁵
- **c**) 108 S^2
- **D**) 27 S⁶
- **E)** 27 S^2

Correct Answer : Option B

129. In which of the following equilibrium $K_P = K_C$?

- A) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$
- **B**) $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$
- c) $PCI_{5(g)} = PCI_{3(g)} + CI_{2(g)}$
- **D**) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$
- **E**) $N2O_{4(g)} \approx 2NO_{2(g)}$

Correct Answer : Option D

In the following cell reaction,

130.
$${}^{Zn}(S) + {}^{Cu^{2}+}(0.1 \text{ M}) = {}^{Zn^{2}+}(0.001 \text{ M}) + {}^{Cu}(S)$$
, at 298 K,
Calculate the E_{cell} at 298 K if E⁰_{cell} at this temperature is 1.1V. (2.303 RT/F = 0.059 V at 298 K)

- **A**) 1.218 V
- **B)** 1.118 V
- **c**) 1.159 V
- **D**) 1.041 V
- **E)** 0.982 V

131. For which of the following electrode reactions the standard electrode potential is the highest at 298 K? The ions are present in aqueous solution.

A)
$$Co^{3+} + e^- \rightarrow Co^{2+}$$

- **B**) $\operatorname{Cl}_{2(g)}$ + 2e⁻ \rightarrow 2Cl⁻
- c) $MnO_{2(s)} + 4H^{+} + 2e^{-} \rightarrow Mn^{2+} + 2H_2O$
- D) $F_{2(q)} + 2e^- \rightarrow 2F^-$

$$\mathsf{E}) \quad \mathsf{AgCl}_{(s)} + \mathsf{e}^- \to \mathsf{Ag}_{(s)} + \mathsf{Cl}^-$$

Correct Answer : Option D

The vapour pressure of pure benzene (molar mass=78 g mol⁻¹) at a certain

- **132.** temperature is 0.85 bar. When 0.5 g of a non-volatile, non-electrolyte is added to 39 g of benzene, the vapour pressure was found to be 0.845 bar at the same temperature. What is the molar mass of the substance?
 - **A**) 85 g mol⁻¹
 - **B**) 127.5 g mol⁻¹
 - **c**) 170 g mol^{-1}
 - **D**) 210 g mol^{-1}
 - **E**) 145 g mol⁻¹

Correct Answer : Option C

- **133.** A first order reaction is 75% completed in 6000 s at 300 K. What is its half life period at the same temperature? (log 2 = 0.3010)
 - **A**) 15 min
 - **B**) 25 min
 - **c**) 75 min
 - **D**) 50 min
 - E) 60 min

Correct Answer : Option D

134. Ammonium ion (NH_4^+) reacts with nitrite ion (NO_2^-) according to the following equation:

 $NH_4^+ + NO_2^- \rightarrow N_{2(g)} + 2H_2O(I)$

The following initial rates of reaction have been measured for the given reactant

•

Experiment	[NH4 ⁺]0,M	[NO ₂ ⁻]0,M	Initial rate, M/hour
Ι	0.010	0.020	0.020
П	0.015	0.020	0.030
III	0.010	0.010	0.005

Which of the following is the rate law (rate equation) for this reaction?

A) Rate =
$$k[NH_4^+]^{1/2}[NO_2^-]$$

B) Rate =
$$k[NH_4^+][NO_2^-]$$

- **c**) Rate = $k[NH_4^+]^0 [NO_2^-]$
- D) Rate = $k[NH_4^+][NO_2^-]^{1/2}$
- **E**) Rate = $k[NH_4^+][NO_2^-]^2$

Correct Answer : Option E

135. Acidified potassium dichromate cannot oxidize

- A) lodides to iodine
- B) Iron (II) salt to iron (III) salt
- c) Tin (II) salt to tin (IV) salt
- **D**) H_2 S to sulphur
- E) Fluoride to fluorine

Correct Answer : Option E

136. Which of the following is a basic oxide?

- A) CrO
- B) CrO₃
- **c**) Mn₂O₇
- \mathbf{D}) Cr_2O_3
- E) V_2O_5

Correct Answer : Option A

137. The transistion metal ion with the highest magnetic moment is

- A) Fe^{2+}
- B) Mn²⁺
- **c**) Ni²⁺
- D) Co^{2+}
- E) Cr^{2+}

Correct Answer : Option B

138. The transition metal with the highest melting point is

- A) Mo
- B) Mn
- C) W
- D) Cr
- E) Au

Correct Answer : Option C

139. Which of the following complex has the least conductivity?

- A) $[Co(NH_3)_5 CI]CI_2$
- B) Cis-[Co(NH₃)₄ Cl₂]Cl
- c) $[Co(NH_3)_6]Cl_3$
- **D**) [Co(NH₃)₃Cl₃]
- E) trans-[Co(NH₃)₄Cl₂]Cl

Correct Answer : Option D

140. Which one of the following is an ambidentate ligand?

- A) Oxalate
- B) Carbon monoxide
- c) Ethylene diamine
- **D**) Ammonia
- E) Nitrite

Correct Answer : Option E

141. The empirical formula of an organic compound is CH_2 . The molar mass of the compound is 56g mol⁻¹. The organic compound is

- A) n-Butane
- B) Propene
- c) Propane
- D) 2-Methylpropane
- E) Cyclobutane

Correct Answer : Option E

Which of the following finely divided metals can be used as catalyst in the hydrogenation **142.** of alkenes and alkynes?

- (i) Pt (ii) Fe (iii) Ni (iv) Pd
- **A**) (i), (ii) & (iii)
- **B**) (ii), (iii) & (iv)
- **c**) (i), (iii) & (iv)
- **D**) (ii) & (iii)
- E) (i), (ii), (iii) & (iv)

143. The solvent used in Wurtz reaction is

- A) Water
- B) Methanol
- c) Ethanol
- **D**) Dry ether
- E) Aqueous ethanol

Correct Answer : Option D

When chlorobenzene is treated with Cl_2 in the presence of anhydrous $FeCl_3$ catalyst

- **144.** gives a mixture of 1,2-dichlorobenzene and 1,4-dichlorobenzene. This reaction is an example of
- A) Nucleophilic substitution reaction
- B) Electrophilic substitution reaction
- c) Free radical substitution reaction
- D) Nucleophilic addition reaction
- E) Electrophilic addition reaction

Correct Answer : Option B

- **145.** Which of the following compound contains two primary alcoholic and one secondary alcoholic groups?
 - A) Ethylene glycol
 - B) Isopropyl alcohol
 - c) 3° Butyl alcohol
 - D) Glycerol
 - E) 2° Butyl alcohol

Correct Answer : Option D

146. Propene on hydroboration-oxidation gives

- A) 1-propanol
- B) 2-propanol
- c) propanal
- D) propanone
- E) etanoic acid

Correct Answer : Option A

- **147.** When propanone is treated with Zn/Hg and Con.HCl propane is formed. This reaction is known as
 - A) Wolf-Kishner reaction
 - B) Clemmensen reaction
 - c) Hoffman reaction

- D) Kolbe's reaction
- E) Cannizzaro reaction

- 148. Benzoyl chloride can be converted to benzaldehyde by
 - A) Rosenmund reduction
 - B) Etard reaction
 - c) Stephen reaction
 - D) Gatterman reaction
 - E) Gatterman-Koch reaction

Correct Answer : Option A

149. The amine with the highest pK_b value is

- A) Methanamine
- B) N-methylmethanamine
- c) Benzeneamine
- D) N-Methylaniline
- E) Ethanamine

Correct Answer : Option C

150. The base that is not present in DNA is

- A) uracil
- B) adenine
- c) guanine
- **D**) thymine
- E) cytosine

Correct Answer : Option A