FINAL ANSWER KEY

Question Paper Code: 8/2025/OL Exam:KEAM 2025 ENGG-1

Date of Test: 23-04-2025

Let A, B, C be any three finite sets.

If
$$n(A \times B) = 160$$
, $n(B \times C) = 80$ and $n(C \times A) = 200$, then $n(A) = 160$

- **A**) 10
- **B**) 18
- **c**) 16
- **D**) 12
- E) 20

Correct Answer: Option E

- **2.** Let $f(x) = x^2 10x 19$, $x \in \mathbb{R}$. Then the inverse image of 5, $f^{-1}(5) =$
- A) $\{-2, -12\}$
- B) $\{-2,12\}$
- c) $\{2, -12\}$
- D) {2, 12}
- **E**) ф

Correct Answer: Option B

- 3. Let f(x) = cos x. Then the value of $\frac{1}{2}[f(x+y) + f(y-x)] f(x)f(y)$ is equal to
- **A**) 2
- **B**) -2
- c) 1
- **D**) -1
- **E**) 0

Correct Answer : Option E

- **4.** Let $f(x) = \log_5 x(x>0)$ and $g(x) = \cos^{-1} x(-1 \le x \le 1)$. Then the domain of $g \circ f$ is
 - **A**) (0,1]
 - B) $[-1,\alpha)$
 - \mathbf{C}) $[0,\alpha)$
 - D) $\left[\frac{1}{5}, 5\right]$
 - [-1,5]

Correct Answer: Option D

- **5.** Let $z = 1 + \frac{1}{i}$. Then the value of z^4 is equal to
 - A) 4
 - B) -4
 - c) 1-i
 - D) 1+i
 - E) i

Correct Answer: Option B

- **6.** The modulus of the complex number $(2\sqrt{2} + i2\sqrt{2})^2$ is equal to
 - **A**) 64
 - B) 4
 - **c**) 32
 - **D**) 8
 - E) 16

Correct Answer: Option E

- **7.** If $z + \bar{z} = 6$ and $z \bar{z} = 4i$, then $|z|^2 =$
 - A) 36
 - **B**) 16
 - **c**) 15
 - **D**) 13
 - **E**) 9

Correct Answer: Option D

- **8.** Let $z = \frac{2-i}{\alpha+i}$, where α is a real number. If $4Re(z) = 3Im(\bar{z})$ then the value of α is
 - **A**) 5
 - **B**) -5
 - **c**) 3
 - D) 2
 - E) -2

Correct Answer: Option D

- **9.** In a G.P., the first and third terms are 4 and 8 respectively. Then the 21^{st} term is
 - **A)** 4012
 - B) 4064
 - c) 4098

- **D**) 2048
- E) 4096

Correct Answer: Option E

- **10.** Let a_1, a_2, a_3, \ldots be in G.P. If $a_1 \cdot a_2 \cdot a_3 = 64$ and $a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5 = 32$, then common ratio is
- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{8}$
- **c**) $\frac{1}{6}$
- **D**) $\frac{1}{2}$
- E) $\frac{1}{4}$

Correct Answer: Option D

- The general term of a sequence is $t_n = \frac{n(n+6)}{n+4}$, $n=1,2,3,\ldots$ If $t_n=5$, then the value of n is
 - **A**) 2
 - **B**) 3
 - c) 4
 - **D**) 5
 - **E**) 6

Correct Answer: Option C

- **12.** The product of first 5 terms of a G.P., whose terms are increasing, is 32. The third term of the G.P. is
- **A**) 2
- **B**) $\frac{1}{2}$
- **c**) 4
- **D**) $\frac{1}{8}$
- **E**) 8

Correct Answer: Option A

- **13.** Let $\alpha=\sum_{k=0}^5 {}^{10}C_{2k}$ and $\beta=\sum_{k=0}^4 {}^{10}C_{2k+1}$. Then $\alpha-\beta$ is equal to
 - A) 32
 - B) 64

- **c**) 128
- **D**) 256
- **E**) 0

Correct Answer: Option E

14. If $\alpha = {}^n C_r$ and $\beta = {}^n C_{r-1}$, then $1 + \frac{\alpha}{\beta}$ is equal to

- A) $\frac{n+1}{r-1}$
- $\mathbf{B}\,) \qquad \frac{n+1}{r}$
- C) $\frac{n-1}{1}$
- $\mathbf{D}) \qquad \frac{n-r+1}{r}$
- $\mathsf{E}) \quad \frac{n+1}{r+1}$

Correct Answer: Option B

15. If $^{11}P_r = 7920$, then the value of r is equal to

- **A**) 7
- **B**) 6
- **c**) 5
- D) 4
- **E**) 3

Correct Answer: Option D

16. In the binomial expansion of $(2x + \alpha)^8$, the co-efficients of x^2 and x^3 are equal. Then the value of α is equal to

- **A**) 2
- $\mathsf{B}) \quad \frac{1}{4}$
- **c**) 4
- $\mathsf{D}) \quad \frac{1}{2}$
- **E**) 3

Correct Answer: Option C

17. Let $A = \{0, 2, 4, 6, 8\}$. The number of 5-digit numbers that can be formed using the digits in A without replacement, is

- **A**) 120
- **B**) 96
- **c**) 88
- D) 64

Correct Answer: Option B

18. Let A be a 3×3 matrix and let B=3A . If |A|=5 , then the value of $\frac{|adj B|}{|3A|}$ is equal to

- A) 27
- B) 125
- c) 25
- **D**) 135
- E) 81

Correct Answer: Option D

19. If
$$\begin{pmatrix} -1 & 2 \\ 3 & -4 \\ -5 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ 13 \end{pmatrix}$$
, then the value of $\alpha + \beta$ is equal to

- **A**) -18
- **B**) 18
- c) 21
- **D**) -21
- **E**) -2

Correct Answer: Option E

20. If the matrix $\begin{bmatrix} 8-k & 2 \\ -2 & 4-k \end{bmatrix}$ is singular, then the value of k is equal to

- **A**) 6
- **B**) 5
- c) 4
- **D**) 3
- **E**) 2

Correct Answer: Option A

The following system of equations

has no unique solution. Then the value of m is equal to

- **A**) 3
- **B**) 5
- **c**) 2
- **D**) -2
- **E**) -3

Correct Answer: Option D

22. The set of all x satisfying the inequalities $-4 \le 2 - 3x < 7$ is

- A) $\left(2,\frac{5}{3}\right)$
- $\mathbf{B}) \qquad \left[2, \frac{5}{3} \right)$
- **c**) $\left[\frac{-11}{3}, 2\right]$
- $\mathbf{D}) \qquad \left(\frac{-5}{3}, 2 \right]$
- $\mathsf{E}) \quad \left[\frac{-7}{3}, 2\right]$

Correct Answer: Option D

23. $-5 < x \le -1$ implies $-21 < 5x + 4 \le b$, the least value of b is

- **A**) 5
- **B**) -5
- c) -4
- D) 4
- **E**) -1

Correct Answer: Option E

24. $tan15^{\circ} + tan75^{\circ} =$

- A) $\sqrt{5} + 1$
- B) 2
- c) $\sqrt{7} 1$
- D) 4
- **E**) 0

Correct Answer: Option D

25. If x+z=2y and $y=\frac{\pi}{4}$,then $\tan x \tan y \tan z=$

- **A**) 1
- B) tan(x-y)
- c) tan(z-y)
- $\mathsf{D}) \quad \frac{1}{2}$
- **E**) 0

Correct Answer: Option A

26. If $\sin x + \sin y = a$, $\cos x + \cos y = b$ and $x + y = \frac{2\pi}{3}$, then the value of $\frac{a}{b}$ is equal

- $\mathbf{A}) \quad \frac{\sqrt{3}}{3}$
- B) $2\sqrt{3}$
- c) $\sqrt{3}$
- D) $4\sqrt{3}$
- $\mathsf{E}) \quad \frac{\sqrt{3}}{6}$

Correct Answer: Option C

27. If $\sin \alpha = \frac{12}{13}$, where $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$ then the value of $\tan \alpha$ is equal to

- **A)** $\frac{5}{12}$
- B) $\frac{13}{5}$
- **c**) $\frac{-12}{5}$
- **D**) $\frac{-13}{5}$
- E) $\frac{-1}{12}$

Correct Answer: Option C

28. If $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to

- A) $\frac{\pi}{6}$
- $\mathsf{B}) \quad \frac{2\pi}{3}$
- C) $\frac{\pi}{3}$
- $D) \frac{4\pi}{3}$
- **E**) 0

Correct Answer: Option C

29. if $5 \sin^{-1} \alpha + 3\cos^{-1} \alpha = \pi$,then α is equal to

- A) $\frac{1}{\sqrt{2}}$
- B) ^
- **C**) $\frac{-1}{\sqrt{2}}$
- D) -1

Correct Answer: Option C

30. If $\theta = \cot^{-1} \sqrt{\frac{1-x}{1+x}}$, then $\sec^2 \theta$

- A) $\frac{1+x}{2}$
- $\mathbf{B}) \quad \frac{1-x}{2}$
- C) $\frac{2}{1-x}$
- D) \mathcal{X}
- E) 2x

Correct Answer: Option C

The straight line ax + by + c = 0 passes through the point (-10, 7). If the line is perpendicular to 11x - 7y = 13, then the value of c is equal to

- **A**) 8
- B) -7
- **c**) 13
- **D**) -13
- **E**) 5

Correct Answer:-Question Cancelled

32. Let ABC be an equilateral triangle. If the coordinates of A are (-2,2) and the side BC is along the line x+y=6, then the length of the side of the triangle is

- A) $2\sqrt{3}$
- B) $3\sqrt{2}$
- c) $4\sqrt{6}$
- D) $6\sqrt{6}$
- E) $2\sqrt{6}$

 $\textbf{Correct Answer}: \mathsf{Option}\; \mathsf{E}$

33. The focus of the parabola $x^2 - 4x + 8y + 4 = 0$ is

- A) (-2, -2)
- B) (1,1)
- $c_{1}(2,1)$
- D) (2, -2)
- E) (1,2)

Correct Answer: Option D

34. A circle touches the x- axis at (9, 0). If it also touches the straight line y=14, then the equation of the circle is

A)
$$(x-9)^2 + (y-7)^2 = 49$$

B)
$$x^2 + (y-7)^2 = 49$$

c)
$$(x-9)^2 + y^2 = 49$$

D)
$$(x-9)^2 + (y-7)^2 = 81$$

E)
$$(x-7)^2 + (y-9)^2 = 49$$

Correct Answer: Option A

The length of major axis and minor axis of an ellipse are, respectively, m and n. If m^2-1 and $n^2=45$ and the eccentricity of the ellipse is $\frac{\sqrt{5}}{3}$, then the length of the major axis is

- **A**) 13
- **B**) 6
- **c**) 12
- **D**) 18
- **E**) 9

Correct Answer: Option E

36. The vertex of the parabola $4y = x^2 - 6x + 17$ is

- A) (3,2)
- B) (4,3)
- $c_{1}(4,2)$
- D) (3,7)
- E) (7,2)

Correct Answer : Option A

37. The eccentricity of the hyperbola $\frac{(2x-6)^2}{2} - \frac{(4y+7)^2}{16} = 1$ is

- A) $\sqrt{5}$
- $\mathbf{B}) \quad \frac{\sqrt{5}}{2}$
- c) $\sqrt{3}$
- D) $\sqrt{10}$
- $\mathbf{E}) \quad \frac{\sqrt{3}}{2}$

Correct Answer: Option C

38. Let $\overrightarrow{a} + \overrightarrow{b} = \lambda \ \hat{\imath} + 16 \hat{\jmath} - 18 \hat{k}$ and $\overrightarrow{a} - \overrightarrow{b} = 2 \hat{\imath} + 8 \hat{\jmath} + \lambda \ \hat{k}$. If $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to $\overrightarrow{a} - \overrightarrow{b}$, then $|\overrightarrow{a}| =$

- **A)** $5\sqrt{13}$
- B) $\sqrt{174}$
- c) $\sqrt{184}$
- **D**) $13\sqrt{5}$
- E) $\sqrt{194}$

Correct Answer: Option E

39. If $|\vec{a}|=12$ and the projection of \vec{a} on \vec{b} is $6\sqrt{3}$, then the angle between \vec{a} and \vec{b} is

- A) $\frac{\pi}{2}$
- $\mathbf{B}) \quad \frac{\pi}{6}$
- C) $\frac{\pi}{3}$
- $\mathbf{D}) \quad \frac{2\pi}{3}$
- E) $\frac{3\pi}{4}$

Correct Answer: Option B

40. Let $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$. If \vec{b} is parallel to \vec{a} and \vec{a} . $\vec{b} = \frac{49}{2}$, then $|\vec{b}| = \frac{49}{2}$

- **A**) 49
- B) 7
- **c**) 14
- D) $7\sqrt{2}$
- E) $\frac{7}{2}$

Correct Answer : Option E

41. If $|\overrightarrow{a} + \overrightarrow{b}| = \frac{\sqrt{14}}{2}$ where \overrightarrow{a} and \overrightarrow{b} are unit vectors, then the value of $|\overrightarrow{a} + \overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2$ is equal to

- **A**) 3
- B) 4
- c) $\sqrt{5}$
- D) $\sqrt{7}$
- E) 7

Correct Answer: Option A

Let α , β and γ be the angles made by a straight line with the x-axis, y-axis and z-axis

- **42.** respectively. If $\cos \alpha + \cos \beta + \cos \gamma = \frac{5}{3}$, then the value of $\cos \alpha \cos \beta + \cos \beta$ $\cos \gamma + \cos \gamma \cos \alpha$ is equal to
 - **A)** $\frac{11}{3}$

 - B) $\frac{8}{9}$ C) $\frac{11}{9}$ D) $\frac{7}{3}$

 - E)

Correct Answer: Option B

- A straight line passing through (6,1,3) meets the line $\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$ at Q. If the lines are **43**. perpendicular to each other, then the coordinates of Q are
 - (2,1,3)A)
 - (1,2,3)B)
 - (3,1,5)C)
 - (2,-1,3)D)
 - (-1,2,3)E)

Correct Answer: Option C

- **44.** The angle between the lines $\frac{x-3}{1} = \frac{y+1}{-1} = \frac{z-2}{-1}$ and $\frac{x+1}{2} = \frac{y-2}{2} = \frac{z+3}{-2}$ is
 - **A**) $\cos^{-1}\left(\frac{\sqrt{2}}{6}\right)$
 - $\mathbf{B}) \qquad \cos^{-1} \left(\frac{\sqrt{6}}{6} \right)$
 - \mathbf{C}) $\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$
 - **D**) $\cos^{-1}\left(\frac{1}{3}\right)$
 - **E**) $\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$

Correct Answer: Option D

A straight line passes through the points (10,8, 6) and (13,9, 4). A unit vector parallel to 45. this line is

A)
$$\frac{1}{\sqrt{17}}(3\hat{i} + 2\hat{j} + 2\hat{k})$$

$$\mathbf{B}_{j} \quad \frac{1}{\sqrt{6}}(\hat{\imath} + \hat{\jmath} - 2\hat{k})$$

c)
$$\frac{1}{\sqrt{14}}(3\hat{i}+\hat{j}+2\hat{k})$$

D)
$$\frac{1}{\sqrt{17}}(3\hat{\imath}+\hat{\jmath}+2\hat{k})$$

E)
$$\frac{1}{\sqrt{14}}(3\hat{i}+\hat{j}-2\hat{k})$$

Correct Answer: Option E

A box contains 4 red and 6 white marbles. Two successive draws of 3 balls are made without replacement. The probability that in the first draw, all the 3 balls are white and in the second draw, all the 3 balls are red, is

A)
$$\frac{2}{105}$$

B)
$$\frac{1}{70}$$

C)
$$\frac{4}{105}$$

D)
$$\frac{1}{105}$$

E)
$$\frac{1}{35}$$

Correct Answer : Option A

47. Let A and B be two events. If $P(A \mid B) = 0.4$, $P(A \mid B') = 0.7$ and P(B) = 0.7, then $P(A \mid B') = 0.7$

- A) 0.44
- **B**) 0.54
- **c**) 0.49
- **D**) 0.5
- **E**) 0.65

Correct Answer : Option C

48. The standard deviation of the numbers -3, 0, 3, 8 is

- $A) \quad \frac{\sqrt{60}}{2}$
- **B**) $\frac{\sqrt{62}}{2}$
- **c**) $\frac{\sqrt{65}}{2}$
- **D**) $\frac{\sqrt{66}}{2}$

$$\mathsf{E}) \quad \frac{\sqrt{67}}{2}$$

Correct Answer: Option D

An unbiased die is tossed until 5 appears. If X denotes the number of tosses required,

- **49.** then $\frac{P(X=2)}{P(X=5)} =$
 - A) $\frac{25}{36}$
 - B) $\frac{125}{216}$
 - **C**) $\frac{216}{125}$
 - **D**) $\frac{36}{25}$
 - E) $\frac{216}{25}$

Correct Answer: Option C

50. $\lim_{x \to 0} \frac{x^2}{\sqrt{2} - \sqrt{1 + \cos x}}$ is equal to

- A) $4\sqrt{2}$
- B) 4
- c) $2\sqrt{2}$
- D) $\sqrt{2}$
- **E**) 0

Correct Answer: Option A

51. Let $f(x) = \begin{cases} \frac{\tan \alpha x + (\beta + 1)\tan x}{x}, & \text{for } x \neq 0 \\ 5, & \text{for } x = 0 \end{cases}$ be continuous at x = 0. Then the value of $\alpha + \beta$ is equal to

- A) 2
- **B**) 3
- c) 4
- **D**) 5
- **E**) 6

Correct Answer : Option C

52. The domain of the function $f(x) = \sqrt{x-3} + 4\sqrt{5-x}$ is

- **A**) [1,2]
- B) [2,4]
- **c**) [3,5]

- [3,20] D)
- [12,20] E)

Correct Answer: Option C

53. If
$$f(x) = \frac{3^x}{3^x + \sqrt{3}}$$
, then $f(x) + f(1 - x)$ is equal to

- A) $\sqrt{3}$
- $\mathbf{B}) \quad \frac{1}{\sqrt{3}}$
- c) $2\sqrt{3}$
- D)
- E)

Correct Answer: Option D

54.
$$\lim_{x \to 0} \frac{\sqrt{\cos^2 x + 3} - \sqrt{\cos^2 x + \sin x + 3}}{x} =$$

- A)
- B) $\frac{-1}{4}$
- **D**) $\frac{-1}{2}$
- E)

Correct Answer: Option B

55. If
$$f(x) = |x^2 + x - 6|$$
 is not differentiable at $x = a$ and $x = b$, then $a^2 + b^2 = a$

- A) 11
- 14 B)
- C) 12
- 13 D)
- 16 E)

Correct Answer: Option D

56. Let
$$f(x) = |\sin 3x| - |\cos 3x|$$
, where $\frac{\pi}{6} \le x \le \frac{\pi}{3}$. Then the value of $f'(\frac{\pi}{4})$ is equal to

- A) $-3\sqrt{2}$
- B) $3\sqrt{2}$
- **C**) $\frac{-3}{\sqrt{2}}$
- D)

0 E)

Correct Answer: Option A

Let $h(x) = f(\sqrt{g(x)})$. If f'(3) = 6, g'(3) = 3 and g(3) = 9, then the value of h'(3) = 1**57**. (3) is equal to

- A)
- 3 B)
- 6 C)
- 9 D)
- E) 18

Correct Answer: Option B

58. Let $f(x) = (\cos^2 x)(a + \cos x)$. If $f'(\frac{\pi}{3}) = 0$ then the value of a is equal to

- A) $\frac{\sqrt{3}}{2}$
- B) $\frac{3}{4}$ C) $\frac{-3}{4}$
- **D**) $\frac{-3}{2}$
- E)

Correct Answer: Option C

59. If $y = tan^{-1}(x^2 - x)$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

- $A) \qquad \frac{2x}{1+\left(x^2-x\right)^2}$
- B) $\frac{2x-1}{1+(x^2-x)^2}$
- c) $\frac{2x-1}{1-(x^2-x)^2}$
- **D**) $\frac{-2x+1}{1+(x^2-x)^2}$
- $(2x-1)(1+(x^2-x)^2)$

Correct Answer: Option B

The function $f(x) = x^2(x-2)$ is strictly decreasing in **60**.

- A) (1,2)
- B) (-1.1)
- C) $\left(\frac{4}{3},\infty\right)$

- **D**) (-1,0)
- $\mathsf{E}) \qquad \left(0, \frac{4}{3}\right)$

Correct Answer: Option E

The surface area of a solid hemisphere is increasing at the rate of $8\,$ c m^2 / sec

- **61.** (retaining its shape). Then the rate of change of its volume (in cm^3 / sec), when the radius is 5cm, is
 - **A**) $\frac{50}{3}$
 - **B**) $\frac{20}{3}$
 - **c**) $\frac{40}{3}$
 - **D**) $\frac{25}{3}$
 - **E**) $\frac{80}{3}$

Correct Answer: Option C

- **62.** The function $f(x) = 2x^3 3x^2 36x + 28$ is increasing in
- A) $(-\infty, -1] \cup [3, \infty)$
- B) $(-\infty, -2] \cup [3, \infty)$
- c) $(-\infty, -2] \cup [5, \infty)$
- $(-\infty, -5] \cup [3, \infty)$
- E) $(-\infty, -2] \cup [8, \infty)$

Correct Answer: Option B

- **63.** Let $f(x) = x^2 + \alpha x + \beta$. If f has a local minimum at (2, 6), then f(0) is equal to
- **A**) 10
- **B**) -6
- **c**) 8
- **D**) -8
- **E**) 6

Correct Answer: Option A

64.
$$\int \frac{2x^2 + 4x + 3}{x^2 + x + 1} \, dx =$$

A)
$$2log_e | x^2 + x + 1 | + C$$

B)
$$2x \log_e |x^2 + x + 1| + C$$

c)
$$\frac{1}{2} log_e | x^2 + x + 1 | + C$$

$$(2x + \log_{e} | x^{2} + x + 1 | + C)$$

$$E_1$$
 $x + 2log_e | x^2 + x + 1 | + C$

Correct Answer: Option D

65.
$$\int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx =$$

A)
$$\frac{1}{2}(\sin^{-1}x)^2 + C$$

B)
$$-(\sin^{-1}x)\sqrt{1-x^2}+C$$

c)
$$(\sin^{-1}x)\sqrt{1-x^2}+x+C$$

D)
$$(\sin^{-1}x)\sqrt{1-x^2}-x+C$$

E)
$$(\sin^{-1}x)^2 + C$$

Correct Answer: Option A

66.
$$\int x^7 (x^8 + 1)^{-3/4} dx =$$

A)
$$\frac{1}{2} \left(1 + \frac{1}{x^8} \right)^{1/4} + C$$

B)
$$4\left(1+\frac{1}{x^8}\right)^{1/4}+C$$

c)
$$(x^8+1)^{1/4}+C$$

D)
$$4(x^8+1)^{1/4}+C$$

E)
$$\frac{1}{2}(x^8+1)^{1/4}+C$$

Correct Answer: Option E

67.
$$\int e^x \sec x (1 + \tan x) dx$$

A)
$$e^x sec^2 x + C$$

B)
$$e^x tan x + C$$

c)
$$e^x \sec x + C$$

D)
$$e^x tan^2 x + C$$

E)
$$e^x s \operatorname{ec} x \tan x + C$$

Correct Answer: Option C

68.
$$\int e^x(x^2-2)\cos(e^x(x^2-2x)) dx =$$

A)
$$sin(e^x(x^2-2x))+C$$

B)
$$sin(e^x(x^2-2)) + C$$

c)
$$x^2e^x\sin(e^x(x^2-2))+C$$

$$\mathbf{D}) \quad e^x \sin(e^x(x^2-2)) + C$$

$$E) \quad e^x \sin(x^2 e^x - 2x e^x) + C$$

Correct Answer: Option A

lf

$$\int_{-\sqrt{3}}^{1} (-6x^2 + 18) dx = \alpha + \beta \sqrt{3}$$

then the value of α +

- β is equal to
- 12 A)
- B) 18
- C) 24
- 28 D)
- 32 E)

Correct Answer: Option D

The value of

70.

$$\int_{\pi/10}^{2\pi/5} \frac{\cot^3 x}{1 + \cot^3 x} \, dx$$

is equal

- to
- A) $\frac{\pi}{20}$
- $\begin{array}{cc} \mathbf{B} \, \mathbf{)} & \frac{\pi}{10} \\ \mathbf{C} \, \mathbf{)} & \frac{3\pi}{20} \end{array}$
- D)
- E)

Correct Answer: Option C

- **71.** The area of the region bounded by $y = x^{5/2}$ and y = x (in square units) is
 - A)
 - B)
 - C)

D)
$$\frac{5}{14}$$

E)
$$\frac{4}{7}$$

Correct Answer: Option C

72.
$$\int_{0}^{1} \frac{3^{2x}}{3^{2x}+1} dx =$$

A)
$$\frac{log_e 5}{2log_e 3}$$

$$\mathbf{B)} \quad \frac{log_e 5}{9log_e 3}$$

c)
$$\frac{log_e 5}{3log_e 3}$$

$$\mathbf{D}) \quad \frac{2log_e 5}{3log_e 3}$$

$$E) \quad \frac{2log_e 5}{9log_e 3}$$

Correct Answer: Option A

73. If
$$y(x) = 2y'(x)$$
, $y(x) \ge 0$ and $y(0) = e^2$ then $y(x) = 0$

A)
$$e^{x/2} + 2$$

B)
$$e^{2x}$$

c)
$$e^{x/2}$$

D)
$$e^2 e^{x/2}$$

E)
$$e^{2x} + 2$$

Correct Answer : Option D

- 74. The integrating factor of the differential equation $sinx \ dy = \frac{1}{2}(sin2x + 2y \ cosx)dx$ is
- A) sec x
- B) sin x
- c) tan x
- D) cos x
- E) cosec x

Correct Answer : Option E

- 75. In the graphical method of a linear programming problem, the optimal solution lies
 - A) at the centre of the feasible region
 - B) at a corner point of the feasible region

- c) at a point on the x-axis
- **D**) at the origin
- E) at the point where the objective function is zero

Correct Answer: Option B

- **76.** If 2.7×10^{-6} is added to 4.3×10^{-5} , giving due regard to significant figures, the result will be
- A) 4.57×10^{-5}
- B) 4.6×10^{-5}
- c) 4.5×10^{-5}
- D) 7.0×10^{-5}
- E) 4.57×10^{-6}

Correct Answer: Option B

- **77.** $[L^0M^0T^{-1}]$ is the dimensional formula for
 - A) angular velocity
 - B) activity of radioactive substance
 - c) time period of oscillation
 - **D**) half life period of a radioactive substance
 - E) impulse of the force

Correct Answer:-Question Cancelled

- 78. If the velocity (in ms^{-1}) of a particle at any instant t is given by $2.0\hat{i} + 3.0t\hat{j}$ then the magnitude of its acceleration (in ms^{-2}) is
 - **A**) 5
 - **B**) 3
 - c) 2
 - D) 4
 - **E**) 6

Correct Answer: Option B

- **79.** Among the following pairs of vectors, if the resultant of two vectors can never have magnitude 4 units, then the magnitudes of the vectors are
- A) 2 units and 2 units
- B) 1 unit and 3 units
- c) 5 units and 1 unit
- **D**) 7 units and 2 units
- E) 5 units and 8 units

Correct Answer: Option D

80. The ratio of angular speeds of the minute hand and second hand of a watch is

- **A)** 1:12
- **B**) 1:6
- **c**) 1:60
- **D**) 12:1
- E) 60:1

Correct Answer: Option C

- When a body is thrown vertically upwards, from the ground, the time of ascent is t_1 and the time of descent is t_2 in the absence of air resistance. Then t_1 is equal to
 - A) $2t_s$
 - **B**) $0.5t_2$
 - c) $0.25t_2$
 - D) t_2
 - E) $4t_2$

Correct Answer: Option D

- When a person of mass m climbs up or down a rope with uniform speed v, the tension in the rope is (g = acceleration due to gravity)
 - \mathbf{A}) mg
 - B) m(g+v)
 - c) m(g-v)
 - D) mgv
 - E) $m(\frac{g}{v})$

Correct Answer: Option A

- A body of mass 0.2 kg travels along a straight line path with velocity $v=(2x^2+2)m$
- **83.** s^{-1} . The net work done by the driving force during its displacement from x=0 to x=2m is
 - **A**) 5.4 J
 - **B**) 4.8 J
 - **c**) 9.6 J
 - **D**) 10.8 J
 - E) 6.5 J

Correct Answer : Option C

- 84. Two colliding particles after collision move together. Then the collision is
 - A) partial elastic collision
 - B) perfectly inelastic collision
 - c) perfectly elastic collision
 - D) partial inelastic collision

E) collision without any transfer of energy

Correct Answer: Option B

A solid cylinder, a solid sphere, a disc and a ring are released from the top of an inclined plane (frictionless) so that they slide down the plane without rolling. The maximum acceleration down the plane is

- A) for the disc
- B) for the solid cylinder
- c) for the solid sphere
- **D**) for the ring
- E) the same for all

Correct Answer: Option E

- **86.** When a particle is rotating with constant angular momentum, then
 - A) torque acting on it is constant
 - **B**) force acting on it is constant
 - c) linear momentum is constant
 - **D**) torque acting on it is zero
 - E) linear velocity is constant

Correct Answer: Option D

Two objects of masses 1 kg and 2 kg are moving towards each other with accelerations 2 **87.** ms^{-2} and 3 ms^{-2} respectively on a smooth horizontal surface. The acceleration of

centre of mass of the system is

- A) $\left(\frac{4}{3}\right)ms^{-2}$ in in the direction of acceleration of 2 kg mass
- B) $\left(\frac{2}{3}\right)ms^{-2}$ in in the direction of acceleration of 1 kg mass
- c) $\left(\frac{2}{3}\right)ms^{-2}$ in in the direction of acceleration of 2 kg mass
- D) $\left(\frac{4}{3}\right)ms^{-2}$ in in the direction of acceleration of 1 kg mass
- E) zero

Correct Answer : Option A

- **88.** There is a mine of depth about 3.0 km. Conditions prevailing in this mine as compared to those at the surface of earth are
- A) higher air pressure, lower acceleration due to gravity
- B) higher air pressure, higher acceleration due to gravity
- c) lower air pressure, higher acceleration due to gravity
- **D**) lower air pressure, lower acceleration due to gravity
- E) same air pressure and acceleration due to gravity

Correct Answer: Option A

The period of revolution of the planet A around the sun is 27 times that of another planet B. If the distance of A from the sun is $\mathcal X$ times greater than that of B from the sun, then the value of $\mathcal X$ is

- **A**) 8
- B) 4
- **c**) 9
- **D**) 3
- E) 12

Correct Answer: Option C

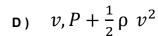
90. The work done in splitting a spherical liquid drop of radius 'a'' into eight liquid droplets of the same size is (surface tension of the liquid = S)

- A) $8\pi Sa^2$
- B) πSa^2
- c) $2\pi Sa^2$
- D) $4\pi Sa^2$
- E) $16\pi Sa^2$

Correct Answer: Option D

91. vessel containing a liquid of density d moves down with an acceleration a(a < g). The pressure due to the liquid at a depth of h below the free surface of the liquid is

- A) hgd
- B) h(g-a)d
- c) h(g+a)d
- D) $h\left(\frac{g}{a}\right)d$
- $\mathsf{E}) \quad h\!\left(\frac{a}{g}\right) d$


Correct Answer : Option B

An incompressible liquid flows through a horizontal pipe having cross-sectional areas A at one end and 2A at the other end. If the pressure and velocity of the liquid at the lower cross- sectional end are P and v, then those values at the other end are (density of the liquid = ρ)

A)
$$\frac{v}{2}$$
, $P + \frac{3}{8}\rho v^2$

B)
$$v, P + \frac{1}{8} \rho v^2$$

c)
$$\frac{v}{4}$$
, $P + \frac{1}{4}\rho v^2$

E)
$$2P + \rho v^2$$

Correct Answer: Option A

- 93. Efficiency of a Carnot engine
 - A) depends on the nature of the working substance
 - B) does not depend on the nature of the working substance
 - $^{\rm C}$) depends only on the temperature of the source T^1
 - $^{\rm D}$) depends only on the temperature of the sink T^2
 - ${\sf E}$) does not depend on both temperature of the source T^1 and temperature of the sink T^2

Correct Answer: Option B

- A cylindrical vessel contains 16 kg of gas at a pressure of 1 atmosphere. A certain amount of gas is taken out and the pressure of gas in the vessel becomes 0.75 atmosphere. The amount of gas taken out is
 - **A**) 2.5 kg
 - **B**) 4 kg
 - **c**) 7.5 kg
 - **D**) 8.25 kg
 - **E**) 10 kg

Correct Answer: Option B

- 95. The number of degrees of freedom for monoatomic gas molecule is
- **A**) 3
- B) 4
- **c**) 5
- D) 7
- E) 1

Correct Answer: Option A

- **96.** Pick out the INCORRECT STATEMENT
 - A) Internal energy of an ideal gas depends only on its temperature
 - B) Change in the internal energy in a cyclic process is not zero
 - c) Change in the internal energy of a gas depends only on its initial and final states
 - **D**) Internal energy depends upon state of matter
 - E) Change in the internal energy in a cyclic process is zero

Correct Answer: Option B

The distance travelled by a particle executing linear S.H.M. from its mean position in 2s is equal to $\frac{1}{\sqrt{2}}$ times its amplitude. Then its time period in seconds is

- **A**) 10
- **B**) 8
- **c**) 9
- **D**) 12
- E) 16

Correct Answer: Option E

Time periods of pendulums A and B are T and $\frac{5T}{2}$. If they start executing S.H.M. at the same time from the mean position, the phase difference between them after the bigger pendulum has completed one oscillation is

- A) $\pi/4$
- B) $(\pi / 2)$
- c) π/8
- D) $\pi / 16$
- **E**) π

Correct Answer: Option E

string of length l is divided into three segments of lengths l_1 , l_2 and l_3 with the fundamental frequencies n_1 , n_2 and n_3 respectively. The original fundamental frequency of the string n is given by

- A) $n = n_1 + n_2 + n_3$
- B) $\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$
- **C**) $\sqrt{n} = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3}$
- **D**) $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$
- $= n_1 n_2 n_3$

Correct Answer : Option B

100. The inward and outward electric flux from a closed surface are $6 \times 10^4 NM^2C^{-1}$ and $3 \times 10^4 NM^2C^{-1}$. Then the net charge (in coulomb) inside the closed surface is

- A) $-6 \times 10^4 \varepsilon_0$
- B) $6 \times 10^4 \varepsilon_0$
- c) $3 \times 10^4 \varepsilon_0$
- D) $9 \times 10^4 \varepsilon_0$

Correct Answer: Option E

101. In a circuit, the capacitance C is connected. The effective capacitance of the circuit can be reduced by

- A) introducing a metal plate between the plates of the capacitor
- B) introducing a dielectric slab between the plates
- c) reducing the potential difference between the plates
- D) connecting another capacitor in series with it
- E) connecting another capacitor in parallel with it

Correct Answer: Option D

102. A given charge Q is divided into two parts which are then kept at a distance 'd' apart. The electrostatic force between them will be maximum if the two parts are

- A) $\frac{Q}{4}$ and $\frac{3Q}{4}$
- **B**) $\frac{7Q}{8}$ and $\frac{Q}{8}$
- **c**) $\frac{Q}{3}$ and $\frac{2Q}{3}$
- **D**) $\frac{5Q}{6}$ and $\frac{Q}{6}$
- E) $\frac{Q}{2}$ each

Correct Answer : Option E

103. The dependence of drift velocity v_d on the electric field \emph{E} , for which Ohm's law is obeyed is

- A) $v_d \propto E^2$
- B) $v_d \propto E$
- c) $v_d \propto \sqrt{E}$
- D) $v_d \propto \frac{1}{E}$
- E) $v_d \propto \frac{1}{E^2}$

Correct Answer : Option B

104. If an equilateral triangle is made of a uniform wire of resistance R, then the equivalent resistance between the ends of a side is

- A) $\frac{2R}{3}$
- $\mathbf{B}) \quad \frac{R}{3}$

- C) $\frac{R}{9}$
- $\mathbf{D}) \quad \frac{2R}{9}$
- E) $\frac{R}{6}$

Correct Answer: Option D

- **105.** When 'n' identical cells are connected in parallel,
- A) net voltage increases
- B) net current increases
- c) net voltage decreases
- D) net current decreases
- E) total internal resistance increases

Correct Answer: Option B

- 106. In a cyclotron, if the frequency of the accelerating field is doubled, then the radius of the charged particle moving in a circular path will be
 - A) doubled
 - B) quadrupled
 - c) the same
 - D) halved
 - E) reduced to one fourth of the original radius

Correct Answer: Option C

A galvanometer of resistance 100Ω gives a full scale deflection for a current of 1mA 107. through it. The resistance required to convert it into a voltmeter which can read upto 2 V is

- A) 1175Ω
- B) 1200Ω
- c) 1525Ω
- D) 1900Ω
- E) 2025Ω

Correct Answer: Option D

- 108. If a magnetic material has magnetic susceptibility $\chi=-0.5\,$, then its relative magnetic permeability $\mu_{\,r}\,$ and the type of material is
 - A) 0, diamagnetic
 - B) 2, ferromagnetic
 - c) 1, paramagnetic
 - **D**) -1, ferromagnetic
 - E) 0.5, diamagnetic

Correct Answer: Option E

- **109.** The self-inductance of an air core solenoid is L. If the number of turns in the solenoid is doubled, keeping all other factors constant, then its self-inductance will be
- A) L
- $\mathbf{B}) \quad \frac{L}{2}$
- c) 2L
- D) 4L
- E) 8L

Correct Answer: Option D

- 110. An alternating current having the peak value $10\sqrt{2}A$ is used to heat a metal wire. To produce the same heating effect, the constant current required is
- A) $10\sqrt{2}A$
- **B**) 5A
- c) 14A
- **D**) 7A
- E) 10A

Correct Answer: Option E

- 111. If v_r , $v_{\rm X}$ and v_v are the speeds of gamma rays, X-rays and visible light respectively in vacuum, then
- A) $v_g > v_v > v_X$
- B) $v_g < v_v < v_X$
- \mathbf{c}_{1} $v_{g}=v_{v}=v_{X}$
- $v_g > v_v < v_X$
- E) $v_X < v_g < v_v$

Correct Answer:-Question Cancelled

- 112. When a ray of light moves from one medium to another medium,
- A) its frequency remains unchanged
- B) its frequency alone changes
- c) its wavelength remains unchanged
- **D**) both its frequency and wavelength change
- E) its velocity remains constant

Correct Answer: Option A

- **113.** The Brewster's angle i_B for any interface should lie between
- A) 30° and 45°
- B) 45° and 90°

- c) 0° and 30°
- D) 0° and 90°
- E) 30° and 60°

Correct Answer: Option B

In an Young's double slit experiment, the band width of the fringes observed is β , when **114.** light of wave length λ is used. With same experimental set up, to double the band width of the fringes, the wave length of light required is

- A) λ
- B) $\frac{\lambda}{2}$
- **c**) 2λ
- D) $\frac{\lambda}{4}$
- E) $\frac{\lambda}{8}$

Correct Answer: Option C

115. Pick out the INCORRECT statement from the following : In photoelectric phenomenon,

- A) the value of stopping potential is the same for radiations of all frequencies
- B) the stopping potential is more negative for the incident radiation of higher frequency
- c) the value of saturation current depends on the intensity of incident radiation
- **D**) the value of saturation current is independent of frequency of incident radiation
- E) the emission of electrons is instantaneous

Correct Answer : Option A

116. If λ be the wavelength of any electromagnetic radiation, the de-Broglie wavelength of its quantum (photon) is

- A) $\frac{\lambda}{4}$
- в) λ
- C) $\frac{\lambda}{2}$
- D) 2λ
- E) $\frac{3\lambda}{4}$

Correct Answer: Option B

The half-life periods of two radioactive materials A and B are 1500 years and 1200 years respectively. If their mean life periods are τ_A and τ_B respectively, then the value of the ratio $\frac{\tau_A}{\tau_B}$

- A) $\frac{5}{4}$
- **B**) $\frac{2}{3}$
- **c**) $\frac{3}{5}$
- **D)** $\frac{5}{7}$
- **E**) $\frac{2}{5}$

Correct Answer: Option A

- **118.** The greatest wavelength of the radiation that will ionize unexcited hydrogen atom is
 - A) 1820 Å
 - B) 450 Å
 - **c**) 910 Å
 - **D**) 700 Å
 - E) 1400 Å

Correct Answer: Option C

An alternating voltage of 250 V, 50 Hz is applied to a full wave rectifier. If the internal **119.** resistance of each diode is 10Ω and the load resistance is $5k\Omega$, the peak value of output current is

- **A**) 0.05 A
- **B**) 0.07 A
- **c**) 0.02 A
- **D**) 0.03 A
- E) 0.04 A

Correct Answer: Option B

- **120.** The reverse biasing in a junction diode,
 - A) increases the number of majority charge carriers
 - B) increases the number of minority charge carriers
 - c) reduces the number of minority charge carriers
 - **D**) decreases the potential barrier
 - E) increases the potential barrier

Correct Answer: Option E

- 121. The density of 3 M aqueous solution of a solute 'X' is 1.86 g mL^{-1} . The molality of the solution is (Molar mass of solute 'X' is 120 g mol^{-1})
 - **A**) 3m
 - **B**) 4m
 - **c**) 2m

- **D**) 5m
- **E**) 1m

Correct Answer: Option C

The Vividh Bharati station of All India Radio, Kozhikode, broadcasts on a frequency of 122. 1500 kHz. What is the wavelength of the electromagnetic radiation emitted by transmitter?($c = 3 \times 10^8 ms^{-1}$)

- **A**) 200 m
- **B**) 300 m
- **c**) 100 m
- **D**) 250 m
- E) 150 m

Correct Answer: Option A

- **123.** Which of the following experimental phenomenon is explained by the wave nature of electromagnetic radiation?
 - A) Black-body radiation
 - B) Photoelectric effect
 - c) Diffraction
 - D) Variation of heat capacity of solids as a function of temperature
 - E) Line spectra of atoms with reference to hydrogen

Correct Answer : Option C

- 124. Which of the following pair of oxides is neutral?
- A) Al_2O_3 and Na_2O
- B) Al_2O_3 and As_2O_3
- ${f c}_1$ Cl_2O_7 and Na_2O
- D) Cl_2O_7 and Al_2O_3
- E) CO and N_2O

Correct Answer : Option E

- **125.** The correct increasing order of dipole moment of NF_3 , H_2S , $CHCl_3$ and NH_3 molecules is
- A) $NF_3 < H_2S < CHCl_3 < NH_3$
- B) $NH_3 < H_2S < CHCl_3 < NF_3$
- c) $NF_3 < CHCl_3 < H_2S < NH_3$
- $_{\mathrm{D}}$) $NH_{3} < CHCl_{3} < H_{2}S < NF_{3}$
- E) $CHCl_3 < H_2S < NF_3 < NH_3$

Correct Answer: Option A

126. Choose the INCORRECT pair of MOLECULE and its SHAPE among the following:

- A) SF_4 Seesaw
- B) BrF_5 Trigonal bipyramidal
- ${f c}_{\, f)}$ NH_3 Trigonal pyramidal
- D) XeF_4 Square planar
- E) ClF_3 T-shape

Correct Answer: Option B

127. In the reaction 3/2 $O_{2(g)} \to O_{3(g)}$, the value of Δ_r G^Θ at 298 K is approximately $(K_p = 10^{-30} \text{ and } 2.303RT = 5.7k Jmol}^{-1})$

- **A)** 171 kJ mol^{-1}
- B) $191 \text{ kJ } mol^{-1}$
- c) $-171 \text{ kJ } mol^{-1}$
- D) $-191 \text{ kJ } mol^{-1}$
- E) $100 \text{ kJ } mol^{-1}$

Correct Answer: Option A

128. Which of the following has least mean multiple bond enthalpy (in kJ mol^{-1}) at 298 K?

- A) $N \equiv N$
- B) $C \equiv N$
- \mathbf{c}) $\mathbf{C} = \mathbf{C}$
- D) $C \equiv O$
- E) C = N

Correct Answer: Option C

129. Which of the following can act as Lewis acid?

- A) H_2O
- B) HO^-
- C) F^-
- D) NH_3
- E) $AlCl_3$

Correct Answer: Option E

130. The concentration of hydrogen ions in a sample of soft drink is $2 \times 10^{-4} \text{mol } lit^{-1}$. Its pH value is (log 2 = 0.3010)

- **A**) 4.369
- B) 3.699

- **c**) 2.369
- **D**) 5.301
- E) 3.301

Correct Answer: Option B

131. Which of the following is the correct order of conductivity (in S m^{-1})?

- A) Fe < Na < Cu < Ag
- B) Fe < Cu < Na < Ag
- c) Ag < Na < Cu < Fe
- D) Ag < Cu < Na < Fe
- E) Na < Fe < Cu < Ag

Correct Answer: Option A

132. 'Layer Test' is used to identify

- A) Bromide
- B) Fluoride
- c) Potassium
- **D**) Water
- E) Chloride

Correct Answer: Option A

133. Which of the following solvent has highest value of Molal elevation constant, K_b ?

- A) Cyclohexane
- B) Carbon disulphide
- c) Carbon tetrachloride
- D) Acetic acid
- E) Chloroform

Correct Answer: Option C

- A) $0.0693 \, min^{-1}$
- B) $0.693 \, min^{-1}$
- c) $6.93 \, min^{-1}$
- D) $0.0639 \, min^{-1}$
- E) $0.0963 \, min^{-1}$

Correct Answer: Option A

- 135. Which of the following statement is not true about a catalyst?
 - A) It catalyses the spontaneous reactions
 - B) A small amount of the catalyst can catalyse the large amount of reactants.
 - **c**) It does not alter the Gibbs energy of a reaction.
 - **D**) It catalyses the non-spontaneous reactions.
 - E) It does not change the equilibrium constant of a reaction.

Correct Answer: Option D

- 136. The most common oxidation states of chromium are
- A) +2,+7
- B) +3,+6
- c) +2,+4
- D) +2,+5
- E) +3,+5

Correct Answer: Option B

- 137. Which of the following statement is true about potassium permanganate?
- A) It is isostructural with $KClO_3$.
- B) It is paramagnetic in nature.
- c) It oxidizes oxalates to carbon monoxide.
- **D**) The structure of permanganate ion is square planar.
- E) It is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent.

Correct Answer: Option E

- 138. The type of sulphide formed by Lanthanoids is
- A) LnS_3
- B) LnS_2
- c) LnS
- D) Ln_2S_3
- E) Ln_2S

Correct Answer: Option D

- **139.** In which of the following compound, Mn has +7 oxidation state?
 - A) MnOF
 - B) MnO_2F
- c) MnO_3F_2
- D) $MnOF_2$

E) MnO_3F

Correct Answer: Option E

140. Which of the following is a heteroleptic complex?

- A) $[Co(NH_3)_6]^{3+}$
- $\mathsf{B)} \quad \left[\mathit{Fe}(\mathit{CN})_{6} \right]^{4-}$
- c) $\left[Co(SCN)_4\right]^{2}$
- D) $\left[Co(NH_3)_4 Cl_2 \right]^+$
- $[Co(CN)_6]^{3}$

Correct Answer: Option D

141. Which of the following technique is used to separate chloroform and aniline?

- A) Fractional distillation
- B) Distillation under reduced pressure
- c) Steam distillation
- **D**) Continuous extraction
- E) Distillation

Correct Answer: Option E

142. In Kolbe's electrolytic method, when sodium acetate is electrolysed, the gases generated at anode are

- ${f A}$) ethane and H_2
- B) H_2 and CO_2
- c) methane and ethane
- **D**) ethane and \mathcal{CO}_2
- E) methane and H_2

Correct Answer : Option D

143. The number of sigma (σ) and pi (π) bonds present in 3-Methylbut-1-ene are respectively

- **A)** 1 and 14
- **B**) 18 and 2
- **c**) 16 and 2
- **D**) 17 and 1
- E) 14 and 1

Correct Answer : Option E

The order of reactivity of the following compounds towards $S_N 2$ displacement reaction is (i) 2-Bromo-2-methylbutane (ii) 1-Bromopentane (iii) 2-Bromopentane

- A) (ii) > (i) > (iii)
- B) (iii) > (i) > (ii)
- C) (ii) > (iii)> (i)
- D) (i) > (ii) > (iii)
- E) (iii) > (ii) > (i)

Correct Answer : Option C

- 145. The IUPAC name of phenyl isopentyl ether is
- A) 3-Methtylbutoxybenzene
- B) 2-Methylbutoxybenzene
- c) 2-Methylphenoxybutane
- **D**) 4-Methylbutoxybenzene
- E) 1-Methylbutoxybenzene

Correct Answer: Option A

- **146.** Phenol on treatment with chloroform in the presence of NaOH, a -CHO group is introduced at ortho position of benzene ring. The reaction is known as
 - A) Kolbe's reaction
 - B) Reimer-Tiemann reaction
 - c) Gattermann-Koch reaction
 - **D**) Stephen reaction
 - E) Sandmeyer reaction

Correct Answer: Option B

Toluene on treatment with chromic oxide in presence of acetic anhydride at 273 - 283 K **147.** gives compound(X). Compound(X) on hydrolysis with aqueous acid gives compound(Y). The compounds (X) and (Y) are respectively

- A) Benzylidene diacetate and phenol
- B) Benzylalcohol and benzene
- **c**) Benzylidene diacetate and benzaldehyde
- D) Benzene and phenol
- E) Benzaldehyde and phenol

Correct Answer: Option C

- **148.** Fehling's reagent is a mixture of
- A) aqueous ${\it CuSO}_4$ and ammonical ${\it AgNO}_3$ solution
- B) aqueous $CuSO_4$ and 2,4-DNP
- ${f c}$) aqueous KOH and ammonical $AgNO_3$ solution
- D) aqueous $CuSO_4$ and alkaline sodium potassium tatarate
- E) aqueous KOH and alkaline sodium potassium tatarate

Correct Answer: Option D

The order of basic strength of following amines is

149. (i) CH_3NH_2 (ii) $(C_2H_5)_2N$ H (iii) $C_6H_5NH_2$ (iv) $C_6H_5NHCH_3$

- **A**) (ii) < (i) < (iv) < (iii)
- B) (iii) < (iv) < (ii) < (i)
- c) (ii) < (iii) < (iv) < (i)
- D) (i) < (ii) < (iii) < (iv)
- E) (iii) < (iv) < (i) < (ii)

Correct Answer: Option E

- 150. The disease caused by the deficiency of riboflavin is
 - A) Cheilosis
 - B) Rickets
 - c) Beri beri
 - D) Scurvy
 - E) Xerophthalmia

Correct Answer: Option A