PROVISIONAL ANSWER KEY

Question Paper Code: 12/2025/OL Exam:KEAM 2025 ENGG-3 Date of Test: 26-04-2025

- **1.** The relation $R = \{(1,3), (2,3), (2,4), (3,1), (4,4), (4,1)\}$ on the set $X = \{1,2,3,4\}$ is
- A) a1-1function
- B) reflexive
- c) transitive
- **D**) not symmetric
- E) an onto function

Correct Answer: Option D

- 2. If two sets A and B are having 11 elements in common, then the number of elements common to $A \times B$ and $B \times A$
- A) 121
- B) 22
- c) 99
- D) 11
- E) 33

Correct Answer: Option A

- **3.** The domain of the function $f(x) = \sqrt{x^2 + x 2}$ is
 - A) $(-\infty, -2) \cup [1, \infty)$
 - B) $(-\infty, -2] \cup (1, \infty)$
 - c) $(-\infty, -2) \cup (1, \infty)$
 - D) $(-\infty, -2] \cup [1, \infty)$
 - $(-\infty,1) \cup [0,\infty)$

Correct Answer : Option D

- **4.** The range of the function $f(x) = \sqrt{x^2 + 4x + 4}$ is
 - A) $[0, \infty)$
 - **B**) [1,∞)
 - c) $[3, \infty)$
 - D) $[2, \infty)$
 - E) $[4, \infty)$

Correct Answer: Option A

Let *s*, *t*, *r* be non-zero distinct positive real numbers. If the complex number z = x + iy

5. satisfies

 $sz + t\overline{z} + r = 0$, then z lies on

- A) imaginary axis
- B) real axis
- \mathbf{c}) y = x
- y = 2x
- $E) \quad x + y = 0$

Correct Answer: Option B

- **6.** Let z = x + iy be a complex number, where $i = \sqrt{-1}$ is the complex unit. Then |z 1 + i| = 5 is a circle with
 - A) centre at (-1,1) and radius 5
 - B) centre at (1,1) and radius $\sqrt{5}$
 - c) centre at (-1,-1) and radius $\sqrt{5}$
 - D) centre at (1,1) and radius 25
 - E) centre at (1,-1) and radius 5

Correct Answer: Option E

7. Let z be a complex number such that $z^3 + iz^2 - iz + 1 = 0$ where $i^2 = -1$. Then |z| = -1

- **A**) 2
- **B**) $\frac{1}{2}$
- C) 1
- $\mathsf{D}) \quad \frac{1}{4}$
- **E**) 3

Correct Answer : Option C

8. Real part of $\frac{1+\sin\frac{2\pi}{27}-i\cos\frac{2\pi}{27}}{1+\sin\frac{2\pi}{27}+i\cos\frac{2\pi}{27}}$ is equal to

- A) $\cos \frac{2\pi}{27}$
- B) $\sin \frac{2\pi}{27}$
- c) $1 + \sin \frac{2\pi}{27}$
- D) $1 + \cos \frac{2\pi}{27}$
- E) $\sin \frac{2\pi}{27} + \cos \frac{2\pi}{27}$

Correct Answer : Option B

- **9.** The 25th term of $9,3,1,\frac{1}{3},\frac{1}{9}$,...is
 - **A**) $\frac{1}{3^{24}}$
 - B) $\frac{1}{3^{25}}$
 - **C**) $\frac{1}{3^{23}}$
 - D) $\frac{1}{3^{22}}$
 - E) $\frac{1}{3^{26}}$

Correct Answer: Option D

- **10.** The first three terms in a G.P. are , a, b and c where $a \neq b$ Then the fifth term is
- **A**) $\frac{c^2}{2a}$
- $\mathbf{B}) \quad \frac{c}{2a}$
- C) $\frac{c^2}{a}$
- $\mathbf{D}) \quad \frac{c^2}{3a}$
- E) $\frac{c}{3a}$

Correct Answer: Option C

- The sum of first n terms of a G.P. is 1023. If the first term is 1 and the common ratio is 2, then the value of n is
- **A**) 12
- B) 11
- **c**) 10
- **D**) 9
- E) 8

Correct Answer : Option C

- **12.** Let G_1 , G_2 , G_3 be geometric means between l and n, where l and n are positive real numbers. Then the common ratio is
 - A) $\frac{n}{l}$
 - $\mathbf{B} \, \mathbf{)} \qquad \left(\frac{n}{l}\right)^{1/2}$
 - C) $\left(\frac{n}{l}\right)^{1/3}$
 - **D**) $\left(\frac{n}{l}\right)^{1/4}$

$$\mathsf{E}) \quad \frac{n^2}{l^2}$$

Correct Answer: Option D

- **13.** 25 distinct objects are divided into 5 groups and each group consists of exactly 5 objects. Then the number of ways of forming such groups, is
 - **A**) $\frac{25!}{(5!)^5}$
 - B) $\frac{25!}{5!}$
 - **c**) $\frac{25!}{(5!)^6}$
 - **D**) $\frac{25!}{(5!)^4}$
 - **E**) $\frac{25!}{(5!)^3}$

Correct Answer: Option C

14.
$$1 + {}^{100}C_1 + {}^{100}C_2 + \ldots + {}^{100}C_{99} + 1 =$$

- A) 2^{99}
- B) 2^{101}
- c) 2^{98}
- $D) 2^{100}$
- E) 100^2

Correct Answer: Option D

- **15.** The coefficient of x^{10} in $(1-x^2)(1-x^3)^9$ is
 - A) 9C_4
 - B) $-{}^{9}C_{6}$
 - c_1 $-{}^9C_4$
 - D) 9C_6
 - E) 0

Correct Answer: Option E

16.
$$^{21}C_1 + ^{21}C_2 + \ldots + ^{21}C_{10} =$$

- A) 2^{20}
- B) 2^{21}
- c) $2^{21}-1$
- D) $2^{21}-2$

E)
$$2^{20} - 1$$

Correct Answer: Option E

17. The constant term in
$$\left(\frac{\sqrt{x}}{2} + \frac{1}{3x^2}\right)^{10}$$
 is

A)
$$\frac{5}{128}$$

B)
$$\frac{9}{128}$$

c)
$$\frac{5}{256}$$

D)
$$\frac{9}{256}$$

Correct Answer: Option C

18. Let B be a matrix of order 3×2 and C be a matrix of order 3×3 . If A is a matrix such that BA = C, then the order of A is

A)
$$2 \times 2$$

B)
$$2 \times 3$$

$$c)$$
 3×2

D)
$$3 \times 4$$

E)
$$3 \times 3$$

Correct Answer : Option B

19. Let
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 2 & 1 & 2/3 \\ 0 & 4 & 4/3 \\ 0 & 0 & 6 \end{pmatrix}$. Then the $\det(QPQ^{-1})$ is equal to

Correct Answer: Option E

20. Let
$$A = \begin{pmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{pmatrix}$$
 and $P = \frac{1}{2} (A + A^T)$. Then

A)
$$P^T = P$$

$$\mathsf{B}) \quad P^T = -P$$

c)
$$P^T = 2P$$

$$\mathbf{D}) \quad P^T = -2P$$

E)
$$P^T = 3P$$

Correct Answer: Option A

21.
$$sec^2x + cosec^2x - sec^2xcosec^2x =$$

A)
$$sec^2x$$

B)
$$cosec^2x$$

c)
$$cot^2x$$

Correct Answer: Option E

22. Let x be a real number such that 7x + 4 < 9x + 8. Then the solution set of the inequality is

A)
$$(-\infty, -2)$$

B)
$$(-\infty, -4)$$

c)
$$(-2,\infty)$$

D)
$$[-2,\infty)$$

E)
$$[-1,\infty)$$

Correct Answer: Option C

23. Let x be a real number such that $\frac{3(x+3)}{7} \le \frac{6(x-1)}{5}$ Then the solution set of the inequality is

A)
$$\left(-\infty, \frac{29}{9}\right)$$

$$\mathsf{B} \; \mathsf{)} \quad \left(\frac{29}{9}, \infty\right)$$

$$c_1$$
 $\left[\frac{29}{9},\infty\right)$

D)
$$(-\infty, \infty)$$

$$\mathsf{E})\quad \left(\frac{17}{9},\infty\right)$$

Correct Answer: Option C

24. sin15°sin45°sin75° =

$$\mathbf{A} \, \mathbf{)} \quad \frac{1}{2\sqrt{2}}$$

$$\mathbf{B} \,) \quad \frac{1}{4\sqrt{2}}$$

c)
$$\frac{1}{3\sqrt{2}}$$

$$D) \quad \frac{1}{4\sqrt{3}}$$

$$\mathsf{E}) \quad \frac{1}{\sqrt{3}}$$

Correct Answer: Option B

If $\sin \theta = \frac{1}{5}$ and the angle θ is in the second quadrant, then $\sec \theta$ is equal to

$$A) \quad \frac{5}{2\sqrt{6}}$$

$$B) \quad \frac{-2\sqrt{6}}{5}$$

$$\begin{array}{c} \mathbf{C}) \quad \frac{2\sqrt{6}}{5} \\ \mathbf{D}) \quad \frac{\sqrt{6}}{5} \end{array}$$

$$\mathbf{D}) \quad \frac{\sqrt{6}}{5}$$

E)
$$\frac{-5}{2\sqrt{6}}$$

Correct Answer: Option E

26. $2^2 \sin\left(\frac{x}{2^2}\right) \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{2^2}\right) =$

- sin2xA)
- sinx B)
- c) cos2x
- D) cos^2x
- $\sin\frac{x}{2}$ E)

Correct Answer: Option B

 $27. \quad \frac{\cos 75^\circ - \cos 1^\circ}{\cos 75^\circ + \cos 15^\circ}$

A)
$$\frac{-1}{\sqrt{3}}$$

$$\mathsf{B}) \quad \frac{1}{\sqrt{2}}$$

C)
$$\frac{1}{\sqrt{3}}$$

D)
$$\frac{-1}{\sqrt{2}}$$

E)
$$\sqrt{3}$$

Correct Answer: Option A

28.
$$\frac{(2\sin\alpha)(1+\sin\alpha)}{(1+\sin\alpha+\cos\alpha)(1+\sin\alpha-\cos\alpha)}$$

- A) $tan \alpha$
- $B) \quad \frac{\sin\alpha + 1}{\sin\alpha 1}$
- c) 1
- D) 2
- E) $\frac{\cos\alpha+1}{\cos\alpha-1}$

Correct Answer: Option C

29. If
$$\sin^{-1}\left(\frac{x}{1+x}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{1}{2}\right)$$
, then x is equal to

- A) $\frac{1}{2}$
- **B**) 2
- **c**) 3
- D) 1
- E) $\frac{1}{4}$

Correct Answer: Option D

30. If
$$tan^{-1}x = tan^{-1}(3) - \frac{\pi}{4}$$
, then x is equal to

- **A**) $\frac{1}{2}$
- $\mathsf{B}) \quad \frac{1}{4}$
- **c**) 1
- **D**) 3
- **E**) 2

Correct Answer : Option A

31. If the distance of the line 4x - 3y + k = 0 from the point (1, 2) is 5 units, then the values of k are

- **A**) 27,-23
- в) -27,23
- c) 29,-24
- **D**) -29,24
- E) -28,-25

Correct Answer : Option A

- Two sides of a parallelogram are along the lines x + y = 5 and x y = -5. If the diagonals of the parallelogram intersects at (3, 6) then one of its vertices, is at
- **A**) (6,5)
- B) (7,6)
- C) (7,5)
- **D**) (6,7)
- E) (5,7)

Correct Answer: Option D

- **33.** Let ax + by + c = 0 the equation of a straight line such that 3a + 2b + 4c = 0. Which one of the following points, lies on the line?
- $\mathbf{A} \, \mathbf{)} \qquad \left(\frac{3}{4}, \frac{1}{2}\right)$
- **B**) $\left(\frac{1}{2}, \frac{3}{4}\right)$
- $\mathbf{C}) \quad \left(\frac{1}{4}, \frac{3}{2}\right)$
- $\mathbf{D}) \quad \left(\frac{3}{2}, \frac{1}{2}\right)$
- E) (2,4)

Correct Answer: Option A

- **34.** If two diameters of a circle are along the lines 2x 3y = 5 and 3x 4y = 7, then the centre is at
 - A) (1,1)
 - B) (-1,1)
 - c) (-1,-1)
 - D) (1,-1)
 - E) (1,-2)

Correct Answer: Option D

- **35.** Let $y^2 = 8x$ be the equation of a parabola. Which one of the following is an arbitrary point on the parabola?
- **A)** $(2t, 4t^2), t \in \mathbb{R}$
- $\mathbf{B}) \quad (2t^2, 4t^2), t \in \mathbb{R}$
- C) $(2t^2, 2t^2), t \in \mathbb{R}$
- **D**) $(2t, 2t^2), t \in \mathbb{R}$
- **E**) $(2t^2, 4t), t \in \mathbb{R}$

Correct Answer: Option E

36. Let *P* be any point on the ellipse $4(x+2)^2 + 9(y-4)^2 = 144$. If F_1 and F_2 are the Foci of the ellipse, then $F_1P + F_2P =$

- 8 A)
- 12 B)
- 16 C)
- 6 D)
- E) 10

Correct Answer: Option B

- **37.** The eccentricity of the hyperbola $\frac{(x-1)^2}{25} \frac{(y+2)^2}{11} = 1$ is
 - A)
 - B)
- c) $\frac{6}{5}$ D) $\frac{7}{5}$
- E)

Correct Answer: Option C

- Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be any three vectors and m, n be scalars. Which one of the following is not true? 38.
- A) $\left(\overrightarrow{a} + \overrightarrow{b}\right) + \overrightarrow{c} = \overrightarrow{a} + \left(\overrightarrow{b} + \overrightarrow{c}\right)$
- B) $m(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = m\overrightarrow{a} + m\overrightarrow{b} + m\overrightarrow{c}$
- C) $(m+n)\overrightarrow{a} = m\overrightarrow{a} + n\overrightarrow{a}$
- $\mathbf{D}) \quad m \left(\overrightarrow{a} \cdot \overrightarrow{b} = m \overrightarrow{a} \cdot m \overrightarrow{b} \right)$
- $\mathbf{E}) \quad m \left(\overrightarrow{a} \times \overrightarrow{b} = m \overrightarrow{a} \times \overrightarrow{b} \right)$

Correct Answer: Option D

- **39.** If $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, then $(3\overrightarrow{a}) \cdot (3\overrightarrow{b})$ is equal to
 - 36 A)
 - 4 B)
 - 108 C)
 - 16 D)
 - 144 E)

Correct Answer: Option C

- **40.** Let $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} 2\hat{k}$. Then $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = (\overrightarrow{a} + \overrightarrow{b})$
 - A)

Correct Answer: Option C

41. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ be non-zero vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$. Then

A)
$$\vec{a} - \vec{d}$$
 is parallel to $\vec{b} - \vec{c}$

B)
$$\overrightarrow{a} - \overrightarrow{b}$$
 is parallel to $\overrightarrow{b} - \overrightarrow{c}$

C)
$$\overrightarrow{b} - \overrightarrow{c}$$
 is parallel to $\overrightarrow{b} + \overrightarrow{c}$

D)
$$\overrightarrow{a} - \overrightarrow{c}$$
 is parallel to $\overrightarrow{b} - \overrightarrow{c}$

E)
$$\vec{a} + \vec{c}$$
 is parallel to $\vec{b} + \vec{d}$

Correct Answer: Option A

Let $\overrightarrow{OP} = 2\hat{j}$ be the position vector a point P. Let $\overrightarrow{r} = \hat{j} + \lambda (\hat{i} + \hat{j})$ be a straight line. The distance of the point P from the line is

A)
$$\frac{\sqrt{2}}{2}$$

B)
$$\frac{\sqrt{3}}{3}$$
C) $\frac{\sqrt{6}}{3}$
D) $\frac{\sqrt{2}}{3}$

$$\mathbf{C}) \quad \frac{\sqrt{6}}{3}$$

$$D) \quad \frac{\sqrt{2}}{3}$$

E)
$$\frac{\sqrt{2}}{4}$$

Correct Answer: Option A

The Cartesian equation of the line $\vec{r} = (2 \cdot 1 - 7 \cdot 1 + 11 \cdot k) + \lambda$ 43.

(3
$$\hat{i} + 7\hat{j} - 13\hat{k}$$
) is

A)
$$\frac{x-2}{3} = \frac{y+7}{7} = \frac{z-11}{-1}$$

B)
$$\frac{x-2}{3} = \frac{y-7}{7} = \frac{z-11}{13}$$

c)
$$\frac{x+2}{3} = \frac{y-7}{7} = \frac{z+11}{-1}$$

D)
$$\frac{x+2}{3} = \frac{y+7}{7} = \frac{z-11}{-13}$$

E)
$$\frac{x+2}{3} = \frac{y}{13} = \frac{z-11}{-7}$$

Correct Answer: Option A

- Which one of the following is a point on the straight line $\overrightarrow{r} = \left(13 \hat{i} 14 \hat{j} + 23 \hat{k}\right) + \lambda \left(5 \hat{i} 7 \hat{j} 9 \hat{k}\right)$, $\lambda \in \mathbb{R}$

 - (13,-14,-23)A)
 - (5,-7,-9)B)
 - (23, -28, 7)C)
 - (23, -28, 5)D)
 - (13,14,23)E)

Correct Answer: Option D

- The point at which the line $\frac{x+3}{11} = \frac{y-2}{-1} = \frac{z+1}{3}$ meets the zx -plane is
 - A) (19,2,5)
 - B) (19,0,5)
 - C) (0,2,-1)
 - (-3,2,0)D)
 - (0,2,-1)E)

Correct Answer: Option B

- 46. The mean deviation about the mean from the data 400,410, 420,430,440 is
 - 14 A)
 - 10 B)
 - C) 20
 - D) 12
 - E) 16

Correct Answer: Option D

- **47.** An unbiased die is thrown and B is an event showing an odd number on top. Then P(B)
 - A)
 - B)
 - C)
 - D)
 - E)

Correct Answer: Option D

- **48.** The standard deviation of 1,2,3,...,100 is
 - A) $\frac{1}{2}\sqrt{3333}$
 - B) $\frac{1}{4}\sqrt{3333}$

c)
$$\frac{1}{6}\sqrt{3333}$$

D)
$$\frac{1}{8}\sqrt{3333}$$

E)
$$\frac{1}{4}\sqrt{1111}$$

Correct Answer: Option A

- **49.** Consider the random experiment that an integer is chosen from the first 100 positive integers. Probability that the chosen number is a multiple of 11, is
- **A)** $\frac{1}{10}$
- B) $\frac{1}{11}$
- **C**) $\frac{9}{100}$
- **D**) $\frac{13}{100}$
- $\mathsf{E}) \quad \frac{11}{100}$

Correct Answer: Option C

$$\mathbf{50.} \quad \lim_{x \to 0} \frac{\sin x}{2\sqrt{2} \sin \frac{x}{\sqrt{2}}} =$$

- A) $\sqrt{2}$
- B) $2\sqrt{2}$
- C) $\frac{1}{\sqrt{2}}$
- **D**) $\frac{1}{2\sqrt{2}}$
- E) $\frac{1}{2}$

Correct Answer : Option E

51.
$$\lim_{\theta \to 0} \frac{\theta \sin 2\theta}{1 - \cos 2\theta}$$

- A) ´
- $\mathsf{B}) \quad \frac{-1}{2}$
- c) -1
- **D**) $\frac{1}{2}$
- E) 0

52. The function $f(x) = x(\sqrt{x+2} + \sqrt{x+1})$ is continuous on

- A) $(-\infty, 1]$
- B) $[4, \infty)$
- **c**) [-3,∞)
- **D**) [-1,∞)
- E) $(-\infty,\infty)$

Correct Answer: Option D

53. $\lim_{x \to 2} \frac{\sin x \cos 2 - \cos x \sin 2}{x - 2} =$

- **A**) -1
- B) 1
- c) 4
- **D**) 2
- **E**) 0

Correct Answer: Option B

54. Let $f(x) = [x], x \in (0, 6)$, where [x] is the greatest integer function. Then the number of discontinuities of f(x)

- **A**) 1
- B) 2
- **c**) 3
- D) 4
- **E**) 5

Correct Answer: Option E

55. Let f(x) = 10 - |x - 5|, $x \in \mathbb{R}$, Then f(x) is not differentiable at

- A) x=10
- **B**) x=15
- c) x=-5
- D) X=5
- E) X=-15

Correct Answer: Option D

56. For $x \in \mathbb{R}$, let f(x) = log 3 - sinx and g(x) = f(f(x)) Then g'(0)=

- A) sin(log3)
- B) -sin(log3)
- $c_1 cos(log3)$
- $2\cos(\log 3)$

Correct Answer: Option E

57. If
$$y = \cos x \cos y$$
, then $\frac{dy}{dx}$ at $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$ is

- **A**) $\frac{-3}{5}$

- B) $\frac{3}{5}$ C) $\frac{5}{3}$ D) $\frac{-5}{3}$
- E)

Correct Answer: Option A

58. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a function such that $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then $f'''(3) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$

- A) 3
- 6 B)
- C)
- D) -2
- f''(2)E)

Correct Answer: Option B

59. If
$$u = sec^{-1}(-sec2\theta)$$
 and $v = cos\theta$, then $\frac{du}{dv}$ at $\theta = \frac{\pi}{4}$, is equal to

- A) $\sqrt{2}$
- B) $2\sqrt{2}$
- C) $\frac{1}{\sqrt{2}}$
- D) $\frac{1}{2\sqrt{2}}$
- $-\sqrt{2}$ E)

Correct Answer: Option B

- The function $f(x) = e^x x$ is increasing in the interval **60**.
 - (0,4)A)
 - B) $(-\infty,0)$
 - (-1,1)C)
 - (-1,0)D)
 - $(0,\infty)$ E)

Correct Answer : Option E

61. Let f(x) = 10 - |x - 3|, $x \in \mathbb{R}$ The maximum of f(x) occurs at

- A) x=0
- B) x=3
- c) x=-3
- D) x=10
- E) x=1

Correct Answer: Option B

62. The distance travelled by a moving particle is given by $s = \frac{t^2}{2} - 6t + 8$, where t denotes the time in seconds. The velocity becomes zero when t is equal to

- **A**) 1
- B) 4
- **c**) 3
- **D**) 6
- E) 8

Correct Answer: Option D

63. If a + b = 10 and ab is maximum, then the value of a is

- A) 5
- B) 3
- c) 6
- **D**) 25
- E) 10

Correct Answer: Option A

64. If
$$\int \frac{1}{x^7 \left(\frac{1}{x^6} + 1\right)^{2/3}} dx = -\frac{1}{2} \left(\frac{1}{\frac{1}{x^6} + 1}\right)^p + c$$
, then $p =$

- **A**) $\frac{2}{3}$
- **B**) $\frac{-1}{3}$
- C) $\frac{1}{3}$

D)
$$\frac{-2}{3}$$

E)
$$\frac{1}{6}$$

Correct Answer: Option C

$$\textbf{65.} \quad \int \frac{\sec x}{(\sec x + \tan x)^9} \, dx =$$

A)
$$\frac{1}{9}(secx + tanx)^9 + C$$

$$B) \quad \frac{-1}{9}(secx + tanx)^9 + C$$

c)
$$\frac{-1}{9}(secx + tanx)^{-9} + C$$

D)
$$\frac{1}{9}(secx + tanx)^{-9} + C$$

$$(secx + tanx)^{-9} + C$$

Correct Answer: Option C

66.
$$\int \frac{\left(9e^x + 4e^{-x}\right)}{\left(9e^x - 4e^{-x}\right)} dx =$$

A)
$$9e^x - 4e^{-x} + C$$

B)
$$\log |9e^x + 4e^{-x}| + C$$

c)
$$4e^x - 9e^{-x} + C$$

D)
$$\log |4e^x - 9e^{-x}| + C$$

E)
$$\log |9e^x - 4e^{-x}| + C$$

Correct Answer: Option E

$$67. \quad \int e^{2\theta} \left(2\cos^2\theta - \sin 2\theta \right) d\theta =$$

A)
$$e^{2\theta}\cos^2\theta + C$$

$$\mathbf{B)} \quad e^{2\theta} \sin 2\theta + C$$

C)
$$2e^{2\theta}\cos^2\theta + C$$

D)
$$e^{2\theta} \sin\theta + C$$

$$\mathbf{E)} \quad e^{2\theta} \cos 2\theta + C$$

Correct Answer: Option A

68.
$$\int e^{\left(x+\frac{1}{x}\right)} \left(\frac{x^2-1}{x^2}\right) dx =$$

A)
$$xe^{\left(x+\frac{1}{x}\right)}+C$$

$$\mathbf{B}) \quad e^{\left(x+\frac{1}{x}\right)} + C$$

C)
$$x+e^{\left(x+\frac{1}{x}\right)}+C$$

$$\mathbf{D}) \quad x^2 e^{\left(x + \frac{1}{x}\right)} + C$$

$$\mathbf{E}) \qquad e^{\left(x+\frac{1}{x}\right)} + x^2 + C$$

Correct Answer: Option B

69. The area bounded by y = x - 1, $1 \le x \le 2$, y = 0 (in sq.units) is

- A) 2
- в) 1
- c) $\frac{1}{2}$
- D) 4
- E) $\frac{1}{4}$

Correct Answer: Option C

70. Given that $\int_{0}^{1} \tan^{-1}(t) dt = \frac{\pi}{4} - \frac{1}{2} \log 2$. Then $\int_{0}^{1} \tan^{-1}(1-t) dt = \frac{\pi}{4} - \frac{1}{4} \log 2$.

A)
$$\frac{\pi}{2} - \frac{1}{2} \log 2$$

B)
$$\frac{\pi}{4} - \frac{1}{2} \log 3$$

c)
$$\frac{\pi}{4} + \frac{1}{2} \log 2$$

$$\mathbf{D}) \quad \frac{\pi}{4} + \frac{1}{2} \log 2$$

E)
$$\frac{\pi}{4} - \frac{1}{2} log 2$$

Correct Answer : Option E

71. $\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx =$

B)
$$\frac{1}{2}$$

C)
$$\frac{1}{4}$$

Correct Answer: Option D

72.
$$\int_{-2}^{2} |x+3| \, dx =$$

- A) 14
- **B**) 16
- **c**) 8
- D) 10
- E) 12

Correct Answer: Option E

73. If
$$\frac{dy}{dx} = \frac{1}{8\left(\sqrt{16 + \sqrt{25 + \sqrt{x}}}\right)\left(\sqrt{25 + \sqrt{x}}\right)\sqrt{x}}$$
, then $y = \sqrt{x}$

A)
$$\sqrt{16 + \sqrt{25 + \sqrt{x}}} + C$$

B)
$$\sqrt{16 + \sqrt{25 + \sqrt{x}}} + x + C$$

c)
$$\sqrt{16 + \sqrt{25 + \sqrt{x}} + x^2 + C}$$

$$x \sqrt{16 + \sqrt{25 + \sqrt{x}}} + C$$

E)
$$x^2 \sqrt{16 + \sqrt{25 + \sqrt{x}}} + C$$

Correct Answer: Option A

74. The elimination of arbitrary constants c_1, c_2, c_3 and c_4 from $y = (c_1 + c_2) \sin(x + c_3) - c_4$ e^x gives a differential equation of order

- **A**) 1
- **B**) 2
- **c**) 3
- D) 4
- **E**) 5

Correct Answer: Option C

75. The maximum value of the objective function z = 2x + 3y, when the corner points of the feasible region are (0, 0), (5, 0), (4, 1) and (0, 2), is

- **A**) 0
- **B**) 6
- **c**) 10

- D) 11
- E) 16

Correct Answer: Option D

76. The dimension of X in the equation, $F = 6\pi \eta X$ is $(F - Force; \eta - Coefficient of viscosity)$

- A) $M^0L^2T^{-1}$
- B) ML^2T^{-2}
- c) $M^0L^2T^{-2}$
- D) $M^0L^3T^{-2}$
- E) ML^2T^{-1}

Correct Answer: Option A

- 77. One torr is
 - A) 1 mm of Hg
 - B) 1 cm of Hg
 - c) 76 mm of Hg
 - **D**) 100 mm of Hg
 - E) 76 cm of Hg

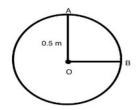
Correct Answer: Option A

78. A particle moving with an initial velocity of 1 ms^{-1} has an uniform acceleration of 2 m s^{-2} . The distances travelled by the particle in the first two intervals of 5 s are respectively

- **A)** 30 m and 110 m
- **B**) 50 m and 110 m
- **c**) 40 m and 80 m
- **D**) 30 m and 80 m
- **E**) 60 m and 160 m

Correct Answer: Option D

When a cricketer hits a ball at an angle of 45° with an initial velocity of $40~ms^{-1}$, the ball 79. falls on the ground at a distance of 160 m. If he hits the ball at the same angle with an initial velocity of 50 ms⁻¹ the ball will fall at a distance of


- **A)** 480 m
- **B**) 180 m
- **c**) 280 m
- **D**) 300 m

E) 250 m

Correct Answer: Option E

A ball moves in a circle of radius 0.5 m from A to B in $\sqrt{2}\,$ s. The average velocity of the ball is (in ms^{-1})

80.

- A) 0.25
- **B**) 0.5
- **c**) 0.75
- **D**) 1.5
- E) 1.25

Correct Answer: Option B

A block of mass m suspended from the ceiling of a lift by an inextensible string of negligible mass. When the lift moves in the upward direction with an acceleration of 0.2 ms⁻², the tension acting on the wire is 80 N. Then the mass of the block is

- **A**) 1 kg
- **B**) 2 kg
- **c**) 8 kg
- **D**) 6 kg
- **E**) 4 kg

Correct Answer: Option C

- 82. The force to be applied to a body of mass 200 g to change its velocity by 25 ms^{-1} in 5 s is
 - **A**) 2.5 N
 - **B**) 50 N
 - c) 3 N
 - **D**) 30 N
 - E) 1N

Correct Answer: Option E

- **83.** Two bodies having masses in the ratio 1:3 have equal linear momentum. Their respective kinetic energies are in the ratio
 - **A**) 3:1
 - B) 1:2
- c) 1:3

- 4:1 D) 2:1 E) Correct Answer: Option A 84.
- A particle moving in a horizontal circle of radius 0.5 *m* completes half rotation. The work done by the centripetal force of 5 N on the particle (in J) is
- 2 A)
- 5 B)
- 2.5 C)
- 3 D)
- 1 E)

Correct Answer: Option B

- The moment of inertia and rotational kinetic energy of a rigid body about an axis are 85. respectively 4 kgm^2 and 50 J. The angular velocity of the body (in rad s^{-1}) is
 - 10 A)
 - 20 B)
 - C) 25
 - 5 D)
 - 15 E)

Correct Answer: Option D

- If a torque of 1.25 Nm acts on a circular ring for a duration of 4 s, then its angular 86. momentum changes by $(kgm^2 s^{-1})$
 - 25 A)
 - B) 50
 - 15 C)
 - 5 D)
 - E) 10

Correct Answer: Option D

- If the angular displacement made by a rotating wheel in 10 s is 150π radian, then the 87. number of revolutions made by it is
 - A) 75
 - 100 B)
 - 300 C)
 - 150 D)
 - 50 E)

Correct Answer: Option A

Two satellites A and B are orbiting the earth at a height of 2.5R and 7.5R respectively 88. from the centre of the earth. The ratio of time periods of A and B is

- A) $\sqrt{3}:1$
- B) $1:3\sqrt{3}$
- c) $1:\sqrt{3}$
- D) $1: 2\sqrt{3}$
- E) $3\sqrt{3}:1$

Correct Answer: Option B

The orbital velocity v_o of an artificial satellite revolving around the earth at a height R

- **89.** from the surface of the earth in terms of escape velocity v_e from the earth is (R radius of the earth)
- A) $\frac{v_e}{2}$
- B) $\frac{v_e}{4}$
- C) $\frac{v_e}{\sqrt{2}}$
- D) v_e
- E) $\sqrt{2}v_e$

Correct Answer: Option A

- 90. \Pr_a is the atmospheric pressure and P is the absolute pressure at a depth h in an ocean. The gauge pressure at the depth h is
- A) $P + P_a$
- $\mathbf{B}) \quad \frac{P P_a}{2}$
- c) $2P P_a$
- $\mathbf{D}) \quad \frac{P + P_a}{2}$
- E) $P-P_a$

Correct Answer : Option E

- **91.** The principle behind the function of Bunsen burner is
 - A) Pascal's law
 - B) law of flotation
 - c) venturimeter
 - D) Toricelli's law
 - E) Archemedes' principle

Correct Answer : Option C

- 92. Bernoulli's principle is applicable to
- A) non-viscous, incompressible fluids in streamline flow

- B) viscous, compressible fluids in streamline flow
- c) viscous, incompressible fluids in streamline flow
- **D**) non-viscous, incompressible fluids in turbulent flow
- E) non-viscous, compressible fluids in turbulent flow

Correct Answer: Option A

- 93. Specific heat capacity of a substance depends on the
 - A) material of the substance only
 - B) volume of the substance only
 - c) mass of the substance only
 - **D**) material and temperature of the substance
 - E) mass and volume of the substance

Correct Answer: Option D

- **94.** Which one is INCORRECT statement?
- A) In an isochoric process, volume remains constant
- B) In an adiabatic process, there is a heat exchange with the surrounding
- c) In an isobaric process, pressure remains constant
- **D**) In an isothermal process, temperature remains constant
- **E**) In a cyclic process, the change in internal energy is zero

Correct Answer: Option B

95. The number of molecules contained in the gas of mass M is $(M_o$ - molar mass, N_A - Avogadro's number)

A)
$$\left(\frac{M}{M_o}\right)\frac{1}{N_A}$$

B)
$$\left(\frac{M_o}{M}\right)N_A$$

C)
$$\left(M\!M_o\right)N_A$$

$$\mathbf{D}) \qquad \frac{(MM_o)^{\frac{1}{N_A}}}{N_A}$$

E)
$$\left(\frac{M}{M_o}\right)N_A$$

Correct Answer: Option E

- **96.** If the mean free path of a gas molecule at 27 °C is 10×10^{-7} m. Its mean free path at 87 °C is
- **A)** $12 \times 10^{-7} \text{ m}$
- **B**) $8 \times 10^{-7} \, \text{m}$
- **C**) $6 \times 10^{-7} \text{ m}$
- **D**) $10 \times 10^{-7} \, \text{m}$

E) $14 \times 10^{-7} \text{ m}$

Correct Answer: Option A

- 97. If the speed of the transverse wave in a wire under certain tension T is v, then its speed under tension 2T (in ${\rm ms}^{-1}$) is
 - A) $\frac{v}{\sqrt{2}}$
 - в) 2*v*
 - c) $\sqrt{2}v$
 - $\mathbf{D}) \quad \frac{3v}{\sqrt{2}}$
 - E) $\frac{v}{2}$

Correct Answer: Option C

- 98. A musician hits a drum 90 times in a minute. The time period of hit is
 - **A**) 1.34 s
 - **B**) 1.5 s
 - **C**) 0.33 s
 - **D**) 0.75 s
 - **E**) 0.67 s

Correct Answer: Option E

- **99.** If the time period of a particle executing SHM is 8 s, then the time period of the potential energy of this particle is
 - A) 16 s
 - **B**) 4s
 - **c**) 2s
 - **D**) 8s
 - E) 32 s

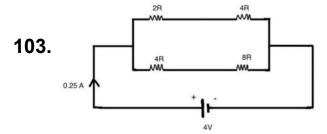
Correct Answer: Option B

- 100. Which one of the following pairs of charges separated by the same distance r will experience a maximum force?
 - **A)** 0.3 C and 0.7 C
 - **B**) 0.1 C and 0.9 C
 - **c**) 0.2 C and 0.8 C
 - **D**) 0.5 C and 0.5 C
 - E) 0.4 C and 0.6 C

Correct Answer: Option D

101. A charge of 5 C is moved from a point P to another point Q by doing a work of 10 J. If the potential at P is 0.5 V, then the potential at Q is

- **A**) 1.0V
- **B**) 2.0V
- c) 2.5 V
- **D**) 1.5V
- E) 3.0V


Correct Answer: Option C

The equivalent capacitance of n capacitors of equal capacitance when connected in **102.** series and parallel are respectively 0.4 μF and 10 μF . The capacitance of each capacitor is

- **A**) 2µF
- **B**) 4µF
- c) 5 µF
- **D**) 6 µF
- E) 1µF

Correct Answer: Option A

The value of R in the given circuit is

- A) 0.4Ω
- **B**) 8Ω
- **c**) 2Ω
- D) 0.8 Ω
- E) 4Ω

Correct Answer: Option E

104. The resistance of a wire at 30°C and 40°C are respectively 5 Ω and 6 Ω . The temperature coefficient of resistance of the material of the wire (in per degree Celcius) is

- **A)** 0.04
- **B**) 0.05
- **c**) 0.02
- **D**) 0.03
- **E**) 0.01

Correct Answer: Option B

105	A wire of 25 Ω resistance is cut into n pieces of equal length. If these pieces of wires are
	connected in parallel, their equivalent resistance is 1 Ω , then the value of n is
A)	3
B)	6 8
C)	5
D) E)	4
-)	
Co	orrect Answer: Option D
	A coil having 100 turns and an area of 0.02 m^2 is placed with its plane perpendicular to the magnetic field of 1 Wb m^{-2} . The magnetic flux linked with the coil is
A)	zero
B)	1 Wb
C)	2 Wb
D)	3 Wb
E)	5 Wb
Co	prrect Answer : Option C
107.	Two charged particles of same mass but having charges in the ratio 1: 4 enter a uniform perpendicular magnetic field. The ratio of their time period in their respective circular path is
A)	1: 4
B)	1: 8
C)	8: 1
D)	4: 1
E)	2: 1
Co	orrect Answer : Option D
108.	Which one is not a ferromagnetic material?
A)	cobalt
В)	tungsten
C)	nickel
D)	gadolinium
E)	iron
Co	prrect Answer : Option B
109.	If an inductor coil of self-inductance 2 H stores 25 J of magnetic energy, then the current I passing through it is
A)	25 A
B)	10A
C)	15A
D)	2 A

E) 5A

Correct Answer: Option E

- **110.** When a current passing through a coil changes at the rate of $30 As^{-1}$, the emf induced in the coil is 12 V. The self-inductance of the coil is
 - **A)** 0.4 H
 - **B**) 0.2 H
 - **c**) 0.6 H
 - **D**) 0.3 H
 - **E**) 0.1 H

Correct Answer: Option A

- An electromagnetic wave travelling in vacuum has its electric field component, $E = 15 \sin \left[1.57y + 5.4t \right]_{j}^{h}$ The wavelength of the wave is
- **A)** 4.0 m
- **B**) 3.0 m
- **c**) 2.5 m
- **D**) 2.0 m
- **E**) 1.0 m

Correct Answer: Option A

- 112. Chromatic aberration arises in thick lenses due to
- A) scattering of light
- B) refraction of light
- c) interference of light
- **D**) reflection of light
- E) dispersion of light

Correct Answer: Option E

- **113.** An unpolarized light incident on a plane glass surface gets totally polarized on reflection. If the refractive index of glass is tan 57°, then the angle of refraction is
- \mathbf{A}) 90°
- B) 33°
- **c**) 13°
- $D) 37^{\circ}$
- E) 45°

Correct Answer: Option B

- **114.** Light energy is redistributed in
- A) diffraction and interference
- B) reflection and diffraction

- c) refraction and interference
- **D**) reflection and polarisation
- E) polarization and refraction

Correct Answer: Option A

Which one of the following statements is INCORRECT?

115.

In photoelectric effect

- A) Threshold frequency is different for different metals
- B) The same metal gives same response to light of different wavelengths
- c) The emission of photoelectrons is an instantaneous process
- Above the threshold frequency the number of photoelectrons emitted per sec is directlyproportional to the intensity of incident radiation
- The maximum K.E. of the photoelectrons is independent of the intensity of incident radiation

Correct Answer: Option B

When an electron is accelerated from rest by a potential of 480 V, the wavelength **116.** associated with it is λ . If the electron at rest is accelerated by a potential of 120 V, then the wavelength associated with it is

- **A**) 5λ
- B) 4λ
- **C**) 2λ
- **D**) 3λ
- **E**) 6λ

Correct Answer: Option C

117. In hydrogen spectrum, the shortest wavelength of Bracket series is produced during the transition between the states

- A) $n_2 = 5$ and $n_1 = 4$
- B) $n_2 = 4$ and $n_1 = 1$
- c) $n_2 = 4$ and $n_1 = 3$
- D) $n_2 = \infty$ and $n_1 = 4$
- E) $n_2 = 4$ and $n_1 = 2$

Correct Answer: Option D

118. A radioactive element having 6×10^5 atoms initially decays and is left with 0.75×10^5 undecayed atoms in 48 years. The half-life time of this radioactive element is

- A) 16 years
- B) 24 years
- c) 12 years
- **D**) 6 years
- E) 18 years

Correct Answer: Option A

119.	The possible number	of energy states i	n a Ge crysta	l containing 5 x 10 ³	atoms is
------	---------------------	--------------------	---------------	----------------------------------	----------

- **A)** 2×10^4
- B) 4×10^4
- C) 4×10^4
- D) 3×10^4
- E) 5×10^4

Correct Answer: Option B

120. A pn junction diode without any voltage biasing acts as a

- A) rectifier
- B) resistor
- c) ac generator
- **D**) voltage regulator
- E) transformer

Correct Answer: Option B

How many moles of methane are required to produce 11 g $CO_{2(g)}$ after combustion? (Molar mass of CO_2 = 44 g mol⁻¹)

- A) 0.25
- **B**) 0.5
- **c**) 1.5
- **D**) 2.0
- E) 2.5

Correct Answer: Option A

122. A sub-atomic particle of mass 6.63×10^{-31} kg is moving with a velocity of 1×10^6 ms $^{-1}$. What is the de Broglie wave length (in nm) associated with it (h = 6.63×10^{-34} Js)?

- **A**) 10.0
- **B**) 1.0
- **c**) 0.10
- **D**) 5.0
- E) 0.50

Correct Answer: Option B

123. For hydrogen atom, the orbitals with the lowest energy among the given orbitals are (i) 4s (ii) $2p_x$ (iii) $3d_z 2$ (iv) $2p_v$

- **A**) (i) & (iii)
- B) (ii) & (iv)

- (ii) & (iii) C)
- (ii) only D)
- E) (i) only

Correct Answer: Option B

Which of the following species will have the largest and the smallest sizes respectively?

124.

Na, Mg, Na⁺, Mg²⁺

- Mg and Na⁺ A)
- Mg and Mg²⁺ B)
- Na and Mq^{2+} C)
- Na and Mg D)
- Na⁺ and Mg E)

Correct Answer: Option C

- **125.** Which of the following statement is INCORRECT?
- The dipole moment of BF_3 is zero. A)
- The bond order of CO molecule is the same as the bond order in NO⁺ ion. B)
- In ozone molecule, the two O-O bond lengths are equal. C)
- The dipole moment of NF_3 is much greater than that in NH_3 D)
- Carbonate ion has three canonical forms. E)

Correct Answer: Option D

In which of following reactions entropy decreases?

(i) $2Pb(NO_3)_{2(s)} \rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$

- **126.** (ii) $H_2O_{(g)} \to H_2O_{(l)}$
 - (iii) $Br_{2(l)} \rightarrow 2Br_{(q)}$
 - (iv) $C_6H_{6(l)} \to C_6H_{6(s)}$
 - **A**) (ii), (iii) and (iv)
 - (i) and (iii) B)
 - (i) and (iii) C)
 - (i) and (iv) D)
 - (ii) and (iv) E)

Correct Answer: Option E

The enthalpy of combustion values of $C_2H_{4(q)}$, C(graphite,s) and $H_{2(q)}$ are

- **127.** respectively -1411kJ mol $^{-1}$, -394 kJ mol $^{-1}$ and -286 kJ mo $^{-1}$. What is the value of enthalpy of formation of $C_2H_{4(q)}$ in kJ mol⁻¹?
 - -102 A)

- **B**) -51
- c) +102
- D) +153
- E) +51

Correct Answer: Option E

The following concentrations were obtained in the formation of $NH_{3(g)}$ from $N_{2(g)}$ and $H_{2(g)}$ at equilibrium at 500 K:

128. $[NH_3] = 1.5 \times 10^{-2} \text{ M}$, $[N_2] = 5 \times 10^{-3} \text{ M}$ and $[H_2] = 0.10 \text{ M}$ Calculate the equilibrium constant for the reaction (in dm⁶ mol⁻³) at 500 K.

$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$$

- **A)** 0.45
- **B**) 4.5
- **c**) 45.0
- **D**) 4.5×10^{-2}
- E) 4.5×10^{-3}

Correct Answer: Option C

129. Which of the following is a Lewis acid?

- A) HCI
- B) HO⁻
- c_1 H_2O
- D) Co^{3+}
- E) NH₃

Correct Answer : Option D

The EMF of the following cell at 298K is

130. $Mg(s) | Mg^{2+}(aq) (0.10M) | | Ag^{+}(aq)(0.001M) | Ag_{(S)}$ (Given: E_{cell}^{0} =3.17V and 2.303RT/F = 0.06 V)

- **A**) 3.32V
- **B**) 2.96V
- **c**) 3.02V
- **D**) 3.17V
- E) 3.47V

Correct Answer: Option C

131. The electrolyte used in lead storage battery is

 A_1 10% H_2SO_4 aqueous solution

- B) 60% H₂SO₄ aqueous solution
- c) 38% H₂SO₄ aqueous solution
- D) 38% HCl aqueous solution
- E) 60% HCl aqueous solution

Correct Answer: Option C

- 132. The binary liquid mixture that has positive deviation from Raoult's law is
- A) Chloroform-Acetone
- B) Chloroethane-Bromoethane
- c) Phenol-Aniline
- D) Benzene-Toluene
- E) Ethanol-Acetone

Correct Answer: Option E

- **133.** A first order reaction has a rate constant of $6.93 \times 10^{-4} \text{ s}^{-1}$ at 300 K. What is the half life period of the reaction in seconds at the same temperature?
 - A) 693
 - B) 6930
 - **c**) 10000
 - **D**) 1000
 - E) 500

Correct Answer: Option D

- **134.** Which of the following is true in respect of a zero order reaction?
- A) Plot of [Reactant] against time is a straight line with slope equal to k
- B) Plot of [Reactant] against time is a straight line with slope equal to -k
- c) Plot of [Reactant] against time is a straight line with slope equal to 2.303 k
- D) Plot of [Reactant] against time is a straight line with slope equal to -2.303 k
- E) Plot of [Reactant] against time is a straight line with slope equal to -k/2.303

Correct Answer: Option B

- 135. Which of the following 3d transition metal has +5 state as the more stable state?
 - **A**) Titanium
 - **B**) Vanadium
 - c) Manganese
 - D) Nickel
 - E) Silver

Correct Answer: Option B

In acidic medium, dichromate behaves as an oxidizing agent which can be represented as

136.
$$Cr2O_7^2 - + xH^+ + ye^- \rightarrow 2Cr^{3+} + zH_2O$$

The values of x, y and z are respectively

- **A**) 6, 7 and 14
- **B**) 7, 6 and 14
- c) 14, 6 and 7
- **D**) 14, 7 and 6
- E) 6,12 and 7

Correct Answer: Option C

137. Which of the following is not an interstitial compound?

- A) Sc_2O_3
- B) TiC
- c) Mn₄N
- D) TiH_{1.7}
- E) Fe₃H

Correct Answer: Option A

138. Which of the following transition metal has the highest magnetic moment?

- A) Sc^{3+}
- B) Ti³⁺
- \mathbf{C}) Cr^{2+}
- D) Fe^{2+}
- E) Mn^{2+}

Correct Answer : Option E

139. Which of the following complex is optically active?

- A) $trans [CrCl_2(ox)_2]^{3}$
- B) $trans [PtCl_2(en)_2]^{2+}$
- c_1 cis $-[Pt(NH_3)_2]Cl_2$
- \mathbf{p}_{1} trans $-[Pt(NH_{3})_{2}]Cl_{2}$
- E_1 cis $-[PtCl_2(en)_2]^{2+}$

Correct Answer : Option E

140. The number of bridging carbonyl groups in $[Mn_2(CO)_{10}]$ is

- A) 2
- **B**) 0
- c) 4
- **D**) 3
- E) 1

Correct Answer: Option B

- 141. On complete combustion 0.12g of an organic compound gives 0.11g of CO₂. What is the percentage of carbon in the organic compound?
- **A**) 15%
- B) 20%
- c) 25%
- **D**) 17.5%
- E) 21.5%

Correct Answer: Option C

- 142. One mole of an alkene reacts with acidic $KMnO_4$ to give two moles of ethanoic acid. What is the alkene?
 - A) 2-Methylpropene
 - B) 1-Butene
 - c) 2-Pentene
 - **D**) 2-Butene
 - E) 2-Methyl-2-butene

Correct Answer: Option D

- **143.** Which of the following is a vicinal dihalide?
 - A) 1,1-Dibromopropane
 - B) 1,2-Dibromopropane
 - c) 1,3-Dibromopropane
 - **D**) Benzal dibromide
 - E) 1,3-Dibromobutane

Correct Answer: Option B

- **144.** S_N 1 reaction is most favoured by
 - A) Ethyl bromide
 - B) 2-methyl-2-bromopropane
 - c) 2-bromopropane
 - **D**) 1-bromopropane
 - E) 1-bromobutane

Correct Answer: Option B

Phenol is treated with Con. H_2SO_4 to gives a product 'X" which on treatment with Con. H_2SO_3 gives compound 'Y'. The compounds 'X' and 'Y' are respectively

- A) Phenol-2- sulphonic acid and 2-nitrophenol
- B) Phenol-2-sulphonic acid and 4-nitrophenol
- c) Phenol-2-sulphonic acid, mixture of 2-nitrophenol and 4-nitrophenol
- D) Phenol-2,4-disulphonic acid, mixture of 2-nitrophenol and 4-nitrophenol
- E) Phenol-2,4-disulphonic acid and picric acid

Correct Answer: Option E

- 146. Denatured alcohol with colour and foul smell is made now a days by mixing ethanol with
 - A) Methanol
 - B) ZnSO₄ and thiophene
 - c) CuSO₄ and pyridine
 - D) FeSO₄ and furan
 - E) $Fe_2(SO_4)_3$ and hexane

Correct Answer: Option C

- 147. Benzoyl chloride is converted to benzaldehyde by
 - A) Etard reaction
 - B) Stephen reaction
 - c) Gatterman reaction
 - **D**) Gatterman Koch reaction
 - E) Rosenmund reaction

Correct Answer: Option E

- 148. In which of the following liquid inter molecular hydrogen bonding does not exist?
- A) CH_3COOH
- B) C_2H_5OH
- c) Phenol
- D) Diethylether
- E) Ethylamine

Correct Answer: Option D

- 149. The IUPAC name of allylamine is
 - A) But-2-en-1-amine
 - B) But-1-en-2-amine
 - c) Prop-2-en-1-amine
 - D) Prop-1-en-2-amine
 - E) 2-Amino 1-propene

Correct Answer : Option C

150. The carbohydrate found in yeast is

- A) lactose
- B) starch
- c) cellulose
- **D**) maltose
- E) glycogen

Correct Answer : Option E